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1 Overview

According to [Wikipedia],

Functional Safety is the part of the overall safety of a system or piece of equipment

that depends on the system or equipment operating correctly in response to its

inputs, including the safe management of likely operator errors, hardware failures

and environmental changes.

Functional Safety Suite is intended for modeling and calculus in the field of functional safety.

It supports the following methods:

Event tree analysis: A flexible and therefore widely used method for quantitative risk

analysis.

Fault tree analysis: A universal method for qualitative and quantitative hazard analysis.

In particular suitable for calculation of failure rates and unavailabilities of systems, that

are characterized by complex homogeneous or in-homogeneous multi-channel architec-

tures. This software also supports correct calculation of failure rates of elements, that

may fail multiple times during system life time. The unreliability can be calculated as

well.

Reliability block diagrams: An alternative visualization of multi-channel structures, based

on the same algorithms as used for fault trees.

Markov models: Flexible method for quantitative hazard analysis of some time-variant

systems, that cannot be described by fault trees. Each fault tree can be represented by

a Markov model, but the Markov model is typically much more complicated, since its

complexity increases exponentially with the number of basic events.

Complex component models: Specific tool to calculate safety parameters of components

with multiple time-variant failure modes, of whose some are safe, some dangerous. E. g.

the typical “bath tub” curve of failure rates can be modeled.

Functional Safety Suite offers:

• A graphical user interface to create and edit models.

• Steady state and transient (time-dependent) evaluation.

• High performance algorithms for exact but nevertheless fast evaluation of even huge

fault trees.

• Charts for unavailability, unreliability, occurrence rate and other values as function of

time.

• Export of all graphics in bitmap (PNG) or vector graphic format (SVG).

• Export of all evaluation output data in text format.

• Calculation or Partial Derivatives (Birnbaum Importancy), Criticality Importance, Risk

Reduction, Fussel-Vesely-Importance and Risk Achievement for both basic events and

generic basic events.
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• Readable file formats for all data (mostly XML files).

• Linking of complex components, fault trees, reliability block diagrams, Markov models

and event trees.

• Support of modularization in fault trees and reliability block diagrams.

• Creation of reports in Microsoft Word format (OOXML, docx).

• Update of reports, even after they have been modified manually by using Microsoft

Word.

Functional Safety Suite aims to provide the maximum possible symmetry between fault trees

and Markov models. Thus most fault trees can be converted automatically to a Markov

model, correctly considering common cause failures and condition events.

Functional Safety Suite further aims to support the user in correct modeling. This is achieved

by

• completely internal handling of common cause failures in fault trees (beta-model),

• simplified handling of common cause failures in Markov models,

• conversion of fault trees to Markov models, including common causes and conditions,

• many generic basic event models fitting to all typical events,

• extensions to standard Markov models, so that also condition events can be used,

• reasonable restrictions regarding modeling and configuration,

• reasonable modifiers for basic events,

• notes or warnings if suspicious data is encountered in evaluations

• cancellation of calculations that don’t make sense

1.1 Terms and abbreviations

Table 1: Terms and abbreviations

Term Meaning

Basic event An event related to an →element. The basic events of a Markov

model form the →edges, the basic events of a reliability block di-

agram are the →blocks, the basic events of an event tree are the

→cases (of a condition).

β The common cause factor of an occurrence rate or probability.

Branch In a fault tree: The part of the tree that is below the event including

the event itself (including the special case that the event is a basic

event and therefore the branch is just the basic event).

Block The representation of a basic event or a reference in a reliability

block diagram.

Continued on next page
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Table 1: Terms and abbreviations

Term Meaning

Case The representation of a basic event in an event tree. This is one

out of one or multiple values that a →condition can take. Each

case can be true or false, defined by a probability (typically an

→unavailability).

Component A technical unit that can have several failure modes.

Condition In an event tree: A constraint that can take at least two →cases.

Condition event A basic event that is characterized by a probability (typically an

unavailability), but no occurrence rate.

D duty cycle

Damage In an event tree: The final state that can be reached in case of a

hazard, characterized by its severity.

Edge The representation of a basic event in a Markov model.

Element Any →component, human behavior or environmental condition

that influences the behavior of the system with respect to the→top

event.

EUC Equipment under Control, see definition in [EN 61508].

Event A situation or a state that can occur related to an element, system

or sub-system.

F (t) The →unreliability.

FT Fault tree

FTA Fault tree analysis

Generic basic event The probabilistic model that describes the occurrence or existence

of a basic event. It is stored in a library and thus can be used in

multiple models.

Generic damage A possible damage, defined within one event tree, saved in the .etf

file.

h The occurrence rate (also: occurrence frequency) with unit 1/h. If

h belongs to an event describing a failure, it is called (conditional)

‘failure frequency’ or (conditional) ‘failure intensity’ (CFI).

MRT Mean repair time. If the overall system (i. e. the “EUC” in terms

of [EN 61508]) is taken out of service immediately after detection

of a failure, it is zero. If the overall system is still operated for a

certain time (e. g. with only one channel instead of two) or if the

overall system isn’t shut down at all, it is to be considered.

MTTD Mean time to detect. Necessary for all kinds of dormant failures.

MTTF Mean time to failure, and also the mean operation time between

two failures.

MTTR Mean time to restoration. Includes the →MTTD and the →MRT.

Continued on next page
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Table 1: Terms and abbreviations

Term Meaning

PFD Probability of Failure on Demand, see definition in [EN 61508]. It

is identical to the (mean) →unavailability Q.

PFH Probability of Failure per Hour, see definition in [EN 61508]. It

is identical to the (mean) failure frequency, and thus the (mean)

occurrence rate → h.

PI Short for ‘Prime Implicant’, the equivalent of a minimal cut-set for

incoherent fault trees. For coherent fault trees, the prime implicants

are identical to the minimal cut-sets. Please see relevant literature

for more information.

Q The →unavailability.

RBD Reliability block diagram

State In a Markov model: A state that a system can take.

Sub-tree A fault tree or a branch of a fault tree that is referred by a transfer-

in gate in a (higher-level) fault tree. A sub-tree may contain refer-

ences to lower-level sub-trees. Dividing a fault tree in several fault

trees is useful, when a fault tree is too large to be displayed on one

page, or if a branch of a tree is needed more than once.

System lifetime The (mean) lifetime of the system in scope. Needed to calculate

some values of complex components (see 10), for some basic event

models (see 4), and as stop time for transient evaluation.

TFFR Tolerable Function Failure Rate, the result of a THR apportionment

and thus the safety requirement for a high demand or continuous

mode safety (sub-)function of a (sub-)system. Also called “Tolera-

ble Probability of Failure per Hour” (TPFH).

THR Tolerable Hazard Rate, the result of a risk analysis for each identi-

fied hazard. If given in 1/h, it is mathematically the same as the

→TPFH, but not each failure is a hazard.

Top event The topmost gate of a fault tree, describing the (undesired) state

that the system can enter due to the occurrence of one or several

basic events.

TPFD Tolerable Probability of Failure on Demand, the result of a THR

apportionment and thus the safety requirement for a low demand

mode safety (sub-)function of a (sub-)system.

TPFH Tolerable Probability of Failure per Hour, the result of a THR ap-

portionment and thus the safety requirement for a high demand

or continuous mode safety (sub-)function of a (sub-)system. Also

called “Tolerable Function Failure Rate” (TFFR).

Continued on next page
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Table 1: Terms and abbreviations

Term Meaning

Unavailability The probability Q(t) that an→element or system wouldn’t perform

as intended, when it would be needed at time t (“on demand”). For

non-repairable systems, the unavailability Q(t) is identical to the

unreliability F (t), and both are called “failure probability”. For re-

pairable systems (modeled e. g. by basic events of type ‘testable and

repairable’ or ‘cyclic’), unavailability Q(t) and unreliability F (t) are

completely different values, since the unavailability becomes zero

with each (complete) test or repair, whereas the unreliability in-

creases monotonously.

Unreliability The probability F (t1, t2) that an →element or system doesn’t per-

form as intended over a certain time interval t1 . . . t2. Usually

t1 = 0 is assumed, thus F (t1, t2) is shortened to F (t) with t be-

ing t2 − t1 = t2.

w The (unconditional) occurrence density considering restoration. In

contrary to h it is unconditional with respect to whether the com-

ponent is still available at time t. However it is not a ‘probability

density’ (such as f(t)), since its integral over infinite time is greater

than 1 in general. Its unit is 1/h.

Note: Up to version 3.3 of this program, the symbol w has been

used for the conditional occurrence frequency, which is now named

h in coherence with most literature.

1.2 Conventions

• A term in slanted letters indicates a term with a certain meaning within Functional

Safety Suite, e. g. a type of data objects.

• A term in bold letters indicates a menu, command or button name.

• A term in ‘single quotation marks’ indicates a fixed term not directly related to Func-

tional Safety Suite.

• A term in “double quotation marks” indicates a name or a quote. It is also used

to indicate, that a term or statement is not literally correct (e. g. a simplification or

common but imprecise wording).
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2 Introduction and user interface

When developing a new technical system, authorities, regulations, standards or just corporate

rules due to manufacturers liability usually request a risk assessment (or risk evaluation) to

be performed. A risk assessment typically includes three stages:

1. Hazard identification 1: Typical methods are to use existing lists, performing a system

FMECA or just “brain storming”. However, this is out of scope of Functional Safety

Suite.

2. Risk analysis: Determine the possible consequences of each hazard, including the sever-

ity of each consequence and its occurrence probability (given the hazard exists). De-

pending on the risk acceptance criteria or principle, the risk analysis often includes the

judgment, whether the residual risk is acceptable or not. Non-functional risk-reduction

measures might be considered in the risk analysis already. Mitigation by safety related

functions shall not yet be considered in the risk analysis step, but in step 3.

3. Hazard analysis: Identify the causes and conditions for the occurrence of each hazard.

If several sub-systems are related to the occurrence of a hazard, this analysis must be

performed on overall system level and for each of the sub-systems. Note that on some

sub-system level, the failure of the sub-system might not lead to the hazard directly,

thus ‘hazard analysis’ should be replaced by ‘failure analysis’ in that case.

Note that the terms risk analysis and hazard analysis might be used differently in some

standards and norms, however in this guide they are used as defined above, which is consistent

to [EN 50126].

2.1 Principles

With the aid of Functional Safety Suite risk assessment will look as follows:

1. Create project:

Click File – New Project, select name and directory. Click File – Project Proper-

ties, set values according to the characteristics of the project. See section 3 for details.

2. Perform risk analysis for each identified hazard:

A universal and therefore frequently used method for quantitative risk analysis is the

event tree method. The event tree method is kind of a super-set of the risk graph

method, i. e. each risk graph can be converted to an event tree, but not each event tree

can be converted to a risk graph, since an event tree provides much more possibilities.

If the risk acceptance criteria is defined as an explicit value (e. g. in terms of “damage

equivalent per hour and unit”), the result of a risk analysis is a THR for each hazard.
2 See section 5 for details.

2This step can be omitted if the safety function(s) and related safety requirements are explicitly given

already. This is typically the case for sub-systems (on lower level).
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3. Define an architecture for the system part(s) related to each hazard or safety function:

An architecture shall describe and define the design of the system (or the system parts)

having a particular hazard (or safety function) in mind. Also non-technical elements

such as a user or a physical value of a process should be mentioned in the architec-

ture. Starting with version 6.0, Functional Safety Suite provides a graphical editor

enabling you to draw architecture diagrams, which are explicitly focused on safety re-

lated function and failure analysis, see section 6. If some constraints are considered, the

corresponding fault tree structure can automatically be derived from an architecture.

4. Perform preliminary hazard analysis and THR apportionment for each hazard:

The preliminary hazard analysis (PHA) describes and defines the high level architec-

ture of the system related to the hazard down to a level of still independent (or “au-

tonomous”) elements. Also human errors and technical failures outside the technical

system to be developed need to be considered. The PHA is typically performed by a

fault tree analysis (FTA), see section 7 for details. The output is a set of safety functions

for each sub-system, including a TPFD and/or TPFH (or TFFR) for each function.

5. Perform hazard analysis (or failure analysis) for each safety sub-function of each sub-

system:

Analyze the technical sub-system that shall perform a safety sub-function with respect

to why it could not be able to perform it as intended. This is usually done by a combi-

nation of a fault tree analysis (top-down method) and a FMEDA or similar (bottom-up

method). The fault tree analysis is a quite simple method to model the architecture of

the function in sufficient detail, whereas the FMEDA is a simple and fast method of

ensuring completeness of all low-level failures.

Note: It is often said, that a fault tree wouldn’t be suitable for repairable systems. This

is only partially correct. In fact, for repairable systems, the occurrence rate (also called

failure frequency) of an event cannot be calculated based on the ‘failure probability’,

even though many tools do this. However with some additional algorithms, a fault tree

is very well suited for determination of failure frequencies of repairable systems. In

Functional Safety Suite the calculation of occurrence rates is based on those algorithms

and thus when using Functional Safety Suite, you are highly encouraged to use fault

trees instead of e. g. (much more complicated) Markov models for repairable systems.

Only in case of systems changing their architecture or major characteristics at certain

instances of time (time-variant systems), a fault tree might not be suitable to model

the behavior of the system in sufficient detail. In that case a Markov model might be

suitable, see section 9.

Finally each basic event of a fault tree, each block of a RBD, or edge of a Markov model

is assigned a generic basic event, determined by its name and description.

6. Define generic basic events:

In the next step, the generic basic events used in the fault trees, RBD’s or Markov

models are quantified. For most events, one of the standard models for generic basic

events will be suitable. For basic events representing failures of components with several
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failure modes (including time-variant failure rates), the complex component model (see

section 10) can be used together with a generic basic event of type link.

Sometimes it is useful to describe a sub-sub-system by a fault tree or Markov model of

its own. Also in this case, a generic basic event of type link can be used, referring to

another fault tree or Markov model, see section 2.4.

7. Evaluate the models, e. g. calculate the value(s) of interest, investigate the importance

of basic events in order to optimize the system etc.

8. Create a report, summarizing all inputs and all results of the risk evaluation, including

assumptions and constraints.

Thus finally a Functional Safety Suite project is a collection of models — models of a system

in its environment (event trees), models of a system with respect to a certain event or state

(fault trees, reliability block diagrams, Markov models), and models of basic events (the

generic basic events and complex components) — and algorithms needed for evaluation.

Often multiple elements of the same type are used in a system, so that the failure model of

this type of element is needed several times in one or several models. Respecting this fact, in

order to facilitate modeling, the probabilistic model of a basic event is given by a generic basic

event. Each basic event used somewhere in a fault tree, reliability block diagram, Markov

model or event tree is mainly a reference to a generic basic event, optionally extended by some

proprietary data (see sections 7.3 for fault trees and 9.3 for Markov models). The reference

is represented by the name of the basic event, which is in fact the name of the generic basic

event. By this the creation and maintenance of models is significantly simplified, especially

the handling of common cause failures and identical events (in [EN 61025] named ‘repeated’

or ‘replicated’ events). The basic events of fault trees are sometimes explicitly called tree

basic events, whereas basic events of Markov models are typically called edges, and basic

events of reliability block diagrams are called blocks.

In fault trees the combination of basic events is modeled by gates. A fault tree is in principle

not suitable to describe the sequence of occurrence of events, but in fact this is not important

for the big majority of systems. For the rare cases in which sequence matters, a Priority-And

gate might be able to describe the behavior correctly. In Markov models the occurrence of

one or multiple basic events results in different states, also depending on the sequence of

occurrence.

In contrary to all other kinds of models, complex components are not based on generic basic

events, since their failure modes are directly stated in the model, see section 10.

All generic basic events needed in the models of a project are collected in libraries. One

library and any number of event trees, fault trees, reliability block diagrams, Markov models

and complex components form a package. Any number of packages and some common data

valid for all packages build the project.
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2.2 The Desktop

2.2.1 The Main Window

The desktop has seven areas:

• The menu bar.

• The tool bar.

• The project tree (shown only if no event or other element of a model is selected).

• A properties panel related to the currently active model, showing either the properties

of the model or properties of some element of the model.

• The model graphics tab pane, with the active model presented in the active tab.

• A message output window displaying hints, warnings or errors occurring during file

operations and calculations.

• A status bar displaying hints, if an action could not be performed.

Figure 1: The desktop

The data displayed in the properties panel is related to the active model graphics tab.

• If no model is active, only the project tree presenting the members of the project is

displayed.
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• If a model is active, but no event selected (marked), in the upper section a tree presenting

the members of the project is displayed, and in the lower section the model’s properties

are displayed, e. g. the description, some visualization related values, some evaluation

related values.

• If a complex component is active and a component event is marked, the properties of

the marked component event are displayed.

• If an event tree is active and a case is marked, the properties of the marked case are

displayed, including the properties of the referred generic basic event.

• If an event tree is active and a crotch including its condition is marked (i. e. a default

case or always case), the properties of the marked crotch and condition are displayed.

• If an event tree is active and a damage is marked, the properties of the marked damage

are displayed, including the properties of the referred generic damage.

• If a fault tree or reliability block diagram is active and a gate is marked, the properties

of the marked gate are displayed.

• If a fault tree or reliability block diagram is active and a basic event is marked, the

properties of the marked basic event are displayed, including the properties of the

referred generic basic event.

• If a Markov model is active and a state is marked, the properties of the marked state

are displayed.

• If a Markov model is active and an edge is marked, the properties of the marked edge

are displayed, including the properties of the referred generic basic event.

Further parameters are accessible via dialog frames.

Results such as lists of minimal cut sets/prime implicants, lists of importancies, or graphics

of time-variant values will be shown in separate windows.

2.2.2 Floating Window

If you right-click in the heading of a model graphics tab, you can select to show the model

graphics tab in a separate floating window. This is helpful to compare two models, in partic-

ular if you’ve got a second physical screen.

Multiple model tabs can be moved to the floating window and back again.

Note that in the floating window, not all editing functions might be available.

2.3 Evaluation parameters

For each complex component, fault tree, reliability block diagram and Markov model you can

select which system value shall be calculated:

• the mean unavailability Qsys

• the mean occurrence rate hsys and the mean unavailability Qsys
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• the unreliability (“failure probability”) after a defined system lifetime or mission time

F (T )

For each complex component, fault tree, reliability block diagram and Markov model you can

select between steady-state evaluation and transient evaluation (time-dependent evaluation).

There are more parameters depending on the type of the model, see the related sections later

in this user manual.

For event trees, there is only one parameter, which affects all event trees in the project, see

section 3.4.3.

2.4 Hierarchy of models: Links

Often it makes sense to split a large system into different modules. This is also possible for

quantitative risk evaluation. Therefore each complex component, fault tree, reliability block

diagram or Markov model can be used as a basic event in another fault tree, reliability block

diagram, Markov model or in an event tree. The relation is created by a generic basic event

of type link.

A linked model is evaluated before the higher level model makes use of it, according to its

specific evaluation parameters. If the upper level model is evaluated in steady-state, a generic

basic event of type link takes the unavailability Q, the occurrence rate h or the unreliability

F (T ) of the referred model — even if the linked model is evaluated for its transients. If the

upper level model is evaluated for its transients, it asks for h(t), Q(t) or F (t). The referred

model will provide either these values or the mean values instead, depending on its evaluation

mode.
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3 Projects

The project organizes all data related to a problem. Therefore the first action after starting

Functional Safety Suite is either opening an existing project or creating a new one. Only one

project can be open at a time.

A project that has not been saved after the latest modification, is marked with an asterisk

‘*’ in the window title.

3.1 Packages

From version 4.0 of Functional Safety Suite on, models are organized in packages. This

concept has been introduced in order to simplify handling of files and to create some kind of

information hiding in a similar manner as modern programming languages do. Each package

consists of one library and optionally some models.

There is always one global package. The global package has the same name as the project

and is located in the project directory, i. e. there is one .lib file with the name of the project

in the project directory, and all model files in the project directory are models of the global

package. When creating a new project, the global library is created.

There might be any number of local packages. Each local package is located in an immediate

sub-directory of the project directory. The name of a local package is given by its directory

name. The library of the local package has the same name as the package. In other words,

whenever a sub-directory of the project directory contains a .lib file with the same name as

the sub-directory, it is regarded as a package.

A model has access to the library and the models of its own package and the global package.

A model of the global package has access to its own package only, accordingly.

In general, you should keep the global package as empty as possible, i. e. create most data in

local packages. In particular, you should create a separate local package for each hazard or

safety function you want to analyze. Only those models and generic basic events, that need

to be referred by models of different packages should be contained in the global package.

A new package is created by File – Create new Package. You will be asked for the name of

the new package. A sub-directory with the given name will be created in the project directory,

and the local library file will be created.

3.2 Models

Functional Safety Suite supports models of the following types:

• Event Trees

• Architecture Diagrams

• Complex Components

• Fault Trees
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• Reliability Block Diagrams

• Markov Models

A new model is created by File – Create new Model. The “Create New Model Dialog”

will open, where you can select the package the new model shall belong to, and the name and

type of the new model.

Figure 2: The create new model dialog

All model files found in a package directory will be loaded when opening a project.

3.3 Files

The following files are created and handled within a project:

• One project (.prj) file per project.

• At least one architecture symbol library (.sym) file per project.

• One generic basic event library (.lib) file per package.

• Optionally one or multiple event tree (.etf) files per package.

• Optionally one or multiple architecture (.arch) files per package.

• Optionally one or multiple complex component (.cmp) files per package.

• Optionally one or multiple fault tree (.ftl) files per package.

• Optionally one or multiple reliability block diagram (.rbd) files per package.

• Optionally one or multiple Markov model (.mdg) files per package.

All files are text files in XML syntax. Therefore they can be read and their information can

be interpreted and even changed manually (if someone considers this useful). 3

In addition some evaluation results, intermediate results and graphics can be exported to

files. Those files are described together with the related export command, see section 11.7.

Reports can be created in Office Open XML Document format (.docx), as used by Microsoft

Office. 4

3XML schemes (.xsd) are available for .arch and .sym files only.
4Please note that Libre Office or Open Office (version 4.1.10) will not correctly work with the report files,
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3.3.1 Project files

The project properties as entered and shown in the project properties dialog are stored in the

.prj file. The directory containing the project file is the project directory, and also contains

the files of the global package.

3.3.2 Architecture Symbol Library files

The graphic objects used to display component parts in architectures are stored in at least

one symbol library file. A default symbol library file is shipped with Functional Safety Suite

and located in the installation directory. Whenever a project is created, a copy of the default

standard symbol file is created in the project directory.

You can create additional symbol files, in order to store your own symbols, created with the

architecture symbol editor (see section 6.7). They will be located in the project directory as

well. You can copy these files to other projects in order to re-use your symbols.

3.3.3 Generic Basic Event Library files

The library file of the global package must have the name of the project. The library file of

a local package must have the name of the package directory, extended by .lib. The library

file only contains generic basic event data. The generic basic events contained in the library

don’t need to be actually used in the project. Each generic basic event data set includes the

name and all parameters necessary to calculate the probabilistic values.

3.3.4 Model files

Each model has a name, that must be unique within the package. The name of the model is

the same as its file name.

The complex component data is stored in one text file in XML format containing the following

information:

• The component’s description as indicated in the properties window.

• The component’s maximum lifetime, test and repair times, evaluation mode and inter-

val.

• Complete information of all component events.

Complex component file names must be extended by .cmp.

The event tree data is stored in one text file in XML format containing the following infor-

mation:

• The event tree’s description as indicated in the properties window.

• Information of all conditions including the names of the cases, so that their referred

generic basic events can be found when loading.

unfortunately.
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• The generic damages used in this event tree, including name, description and severity.

• Complete information of all crotchs including the structure of the event tree.

Event tree file names must be extended by .etf.

The architecture data is stored in one text file in XML format containing the following

information:

• The architecture’s description as indicated in the properties window.

• The architecture components and the component parts each architecture component

consists of.

• The name of the component part symbol to be used for each component part.

• Optionally the name of the generic basic event representing the failure mode of each

component part.

• The nets connecting the architecture components.

Architecture file names must be extended by .arch.

The fault tree data is stored in one text file in XML format containing the following infor-

mation:

• The fault tree’s description as indicated in the properties window.

• Some presentation related parameters.

• The mode how to convert branches to Markov models.

• The evaluation mode, algorithm and interval (in case of transient evaluation).

• Complete information of all gates including the structure of the fault tree.

• Names of the basic events so that their referred generic basic events can be found when

loading.

• Optional suffixes and modifiers of the basic events (see section 7.3).

Fault tree file names must be extended by .ftl.

The data of reliability block diagrams is identical to the data of fault trees, and therefore the

same file structure is used. The only difference is the extension .rbd.

The Markov model data is stored in one text file in XML format containing the following

information:

• The diagram’s description as indicated in the properties window.

• Some presentation related parameters.

• Whether and how the model shall be pre-processed before evaluation.

• The evaluation mode and interval.

• Complete information of all states including the structure of the Markov model.

• Names of the edges so that their referred generic basic events can be found when loading.

• Optional modifiers of the edges (see section 9.3).

Markov model file names must be extended by .mdg.
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3.3.5 Model files not belonging to the project

If you want a certain model to be excluded from the project, but not delete it completely,

you can remove it by File – Remove active Model. This will unload the model and add

ignore to its file extension.

You can add an existing model, whose file is extended by ignore, to any package by File –

Add existing Model.

Of course you can also add, rename or delete files using a file system tool, such as Windows

Explorer, but you shouldn’t do this while Functional Safety Suite is running in order to avoid

inconsistencies.

3.4 The Project Properties Dialog

In the project properties dialog all options relating to all models of the project can be set.

This information is stored in the project file in the project directory (extension .prj).

Note: There are many more parameters that can be set for each particular model and will be

stored in each model’s file, therefore. These parameters are described in the related model’s

sections later in this manual.

3.4.1 General tab

Figure 3: The project properties dialog
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3.4.1.1 General Project Properties

Path: The path to the project directory.

Name: A user defined identifier of the project. The name is displayed in the title of the

Functional Safety Suite window.

Description: An optional description of the project.

3.4.1.2 General Evaluation Parameters

System lifetime (Mission time): The system life time (in some literature called “mission

time”) in hours. It is used to determine the unreliabilities (occurrence probabilities) F (T )

and occurrence numbers N(T ) as well as to calculate some values for some generic basic event

models (see section 4) and complex components (see section 10.

3.4.1.3 Model Header Display Properties

Select whether to show a header in the graphics or not. Select which values shall be shown

in the header.

3.4.1.4 Text Display Properties

Select ‘Shrink text to fit into box’ if you want the text size to be adjusted so that the text

fits into the event boxes of fault trees or reliability block diagrams.

From version 6.0 on, all descriptions can be entered in multiple languages:

• project model descriptions

• architecture component descriptions

• architecture component part descriptions

• complex component failure mode descriptions

• generic basic event descriptions

• fault tree gate descriptions

• Markov model state descriptions

• event tree condition descriptions

• event tree generic damage descriptions

The active language is selected by the field Description language. The list contains all lan-

guages already defined for this project. Only the descriptions in the active language will be

shown and can be modified, descriptions in other languages are kept in the background and

will not be modified.

In order to add another language, select a language out of the list in Add new language and

press Add. If the list of predefined languages doesn’t contain the language of interest, you

can type any other name. There is no difference between predefined languages and any other

name, the list is only intended to guarantee that you use the same name for the same language
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in different project, so that you can import models or packages from other projects without

problems.

If you didn’t enter a description for the active language yet, the description of the first

language will be shown instead.

3.4.2 Architectures tab

Conversion Parameters

Select in which way a fault tree derived from the architecture is automatically split into

sub-trees. See section 6.6.4 for more information.

3.4.3 Event Trees tab

Figure 4: The event trees tab

Event Tree Evaluation Parameters

Event trees can be evaluated in two ways:

• Calculation of the tolerable hazard rate (THR), given a tolerable risk

• Calculation of the risk, given a hazard rate hHazard

See section 5 for details.

3.4.4 Fault Trees & RBDs tab

3.4.4.1 Evaluation Mode

Qualitative analysis: Qualitative analysis is only possible for fault trees and reliability

block diagrams, since other models are not suitable for this kind of evaluation. It means the

following operations:
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Figure 5: The fault trees properties tab

• determination of minimal cut-sets of a fault tree or reliability block diagram.

• optionally check a fault tree for consistency based on rules (version 6.0 includes an

algorithm to check the rules stated in the [SiRF]).

If qualitative analysis is selected, events of fault trees provide a second text line in the name

field below the name, intended to be used to indicate some “safety level” or another qualitative

specifier. The content of the second text line can be entered separately for each event and

belongs to this event, not to the generic basic event (as the quantity related values do). This is

necessary, because the “safety levels” of events (=component failures) of qualitative fault trees

(maybe better called “occurrence rate levels” or “unavailability levels”) are often determined

top-down (similar to a THR apportionment) and therefore different levels might be applied

to the same (generic) event at different positions. The second text line is stored together with

the gate or basic event in the fault tree file — even if the type is set to quantitative.

Quantitative evaluation: Select this, if you want to perform steady-state or transient

quantitative evaluations.

3.4.4.2 Minimal Cutsets / Prime Implicants

Max. number of PIs shown in window: This parameter is related to the Minimal

Cutsets / Prime Implicants window, see section 11.6.3. In case of large fault trees with

thousands of prime implicants, it might take quite some time to pop up the window. Since
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you’ll usually be interested in the most critical prime implicants only, putting all prime

implicants in the window is a waste of time and memory. In case of an export to a CSV file,

all prime implicants will be exported, of course.

3.4.5 Markov Models tab

Figure 6: The Markov models tab

Markov Model Evaluation Parameters

A Markov model directly models the (unconditional) occurrence density w. The occurrence

rate h can be derived from w in two ways:

• By dividing w by the probability not being in a final state or

• by dividing w by the probability being in a start state.

For systems with good detection and repair rates, there will be no significant difference, how-

ever for systems usually not being in a start state, the first alternative can be too optimistic.
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4 Generic Basic Events and Libraries

Each basic event — a basic event of a fault tree, a block of a reliability block diagram as well

as an edge of a Markov model — refers to a generic basic event. A generic basic event has a

unique name, a description, a type and several values needed to determine the actual values

of e. g. occurrence rate h(t) or unavailability Q(t). Also each case of an event tree refers to

a generic basic event, even though this is not a real “basic event” logically but a constraint,

characterized by its probability p = Q.

Libraries are just collections of generic basic events. Each package has a library of its own.

The name of the library is identical to the package and cannot be changed. You can import

generic basic events from other libraries, see section 11.4.

The generic basic events in a library can be referred by all models in the package. The generic

basic events in the global library can be referred by all models in all packages. In case there

is a generic basic event in the global library with the same name as in the local library, a

local model will use the generic basic event in the local library.

Due to the existence of generic basic events it is on the one hand safeguarded, that all models

use the same data for identical or similar basic events, on the other hand you only have to

change a basic event property at one position and all other usages are automatically updated,

too. In addition, common cause factors can be handled very efficiently: In fault trees all

basic events with the same names share the common cause factor (β-factor, see [EN 61508])

of the generic basic event— even if they are located in sub-trees referred by transfer-in gates.

Note that if you add an event tree, fault tree or Markov model from another project (by

using File – Add Fault Tree etc.), the data of the related generic basic events is not copied

since they are not stored in the .etf, .ftl, .rbd or .mdg file. Instead either a generic basic

event of the local or global library of the new project is referenced (if there exists one with

the given name stated in the model file), or a new generic basic event with this name is

created in the package into which the existing model is imported (with default probabilistic

data). Of course you can import the data of all generic basic events of the old project by

using Library – Import GBEs from other Library or Project, see section 11.4. This

avoids duplication of logically (but by accident not namely) identical basic events, resulting

in wrong calculations due to lost common cause relations.

4.1 The Library View

The content of the library is displayed as a table by double-clicking on the library’s name in

the project member’s tree, see figure 7.

You can sort the list of generic basic events in alphabetic order or by their model type. Unused

values of each event are shown in light grey. All generic basic events not used in any model

of the project are displayed with grey background, or not displayed at all if deselected in the

control panel on the left.
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Figure 7: Content of the library shown as table

In the Library View, you can create new generic basic events, import generic basic events

from another library or export all data to a .csv file, see section 11.4.

When a generic basic event is selected by clicking the table row, all its properties are displayed

in the properties panel on the left, where they can be edited also. The selected generic basic

event can be deleted, cut, copied, renamed, duplicated or moved to another package. Note

that some actions can only be performed if some constraints are fulfilled, e. g. that the generic

basic event is not used currently.

To show the project member’s tree and the library properties again, deselect the generic basic

event by clicking somewhere above the table.

4.2 General properties of Generic Basic Events

Name:

A user defined identifier of the generic basic event and at the same time the name of all basic

events (incl. cases) referring to it. The name must be unique within the library.

Description:

A user defined description of the generic basic event and therefore identical for all basic events

referring to this generic basic event.

4.2.1 Modifiers

4.2.1.1 Condition

If the condition event flag is set, the occurrence rate h is set to 0. Thus only the unavailability

Q or Q(t) is considered in evaluations.

In fault trees a condition event is visualized by an ellipse instead of a circle. A condition event

should always be connected to an inhibit gate, except if the overall fault tree is evaluated for
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Figure 8: Properties of a generic basic event

unavailability Q only.

In Markov models a condition event will create an instantaneous transition, see section 9.1.3.

A case of a condition in an event tree is always a probability (no rate), independent of the

condition event flag being set or not. However it should be set.

There are two special cases related to the condition event flag in fault trees or reliability block

diagrams:

1. If the condition event flag is set for a generic basic event of type immediate, and the

basic event is used as condition input of a INHIBIT gate, and the parameter probability

is set to zero, the branch topped by the INHIBIT gate is completely ignored.

2. If the condition flag is set for a generic basic event of type immediate, and the basic

event is used as condition input of a INHIBIT gate, and the parameter probability is

set to one, the condition event is ignored.

These rules might be useful in order to adapt the structure of a (generic) fault tree to different

specific applications, i. e. to simplify the re-use of a fault tree for different projects.
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4.2.1.2 House

This modifier is only a marker with no effect to the evaluation. In fault trees the basic event

is visualized by a “house” instead of a circle, this is where the name comes from. It indicates

an event, that will occur in certain intervals for sure, not related to failures. The rate is often

greater than 1/h.

House events must be described by the immediate model, requiring an occurrence rate h and

optionally an unavailability Q, or by the cyclic model.

4.2.1.3 Non-developed

This modifier is only a marker with no effect to the evaluation. In fault trees the basic event

is visualized by a rhombus instead of a circle. It is typically used to mark an event, that is

out of scope or neglected.

4.2.1.4 No contribution to occurrence rate

If this modifier is selected, a basic event in a fault tree referring to this generic basic event

will be ignored in the calculation of the occurrence rate. For fault trees this means, that the

occurrence rate of each gate will be determined as if the basic event would be removed from

the fault tree. It is also considered when a gate is converted to a Markov model.

The modifier might make sense if you want to describe a generic component, that is used in

different systems, in some of which the fault modeled by the event effects the unavailability

of ‘low demand mode’ safety functions, but is not dangerous for ‘continuous mode’ safety

functions since it is detected within the ‘process safety time’ and leads to the EUC shutting

down safely. This is the operation assumed in the formulas stated in [EN 61508-6].

However it is advised to use different models for different safety functions or operation, in

particular if you want to convert it to a Markov model.

The unavailability Q is not affected by this tag.

4.3 Types and probabilistic values of Generic Basic Events

The probabilistic failure characteristics of a component (such as the failure rate or the failure

detection time) may significantly depend on the particular application. E. g. the failure rate

of a relay will depend on the voltage and current (wear of contacts) as well as on the cycles

per time and the overall system life time. The failure rate of a semiconductor will depend on

the temperature etc. Therefore the failure rates of components of the same type may differ by

multiple orders of magnitude depending on their function also within the same product. This

is in particular true if the critical failure modes differ between the functions. If this is the

case, different generic basic events should be created even for the same type of component,

reflecting the different environments, operating conditions or critical failure modes of the

components. The common cause factor β must be modeled manually in this case (explicit
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basic events referring to a generic basic event with the occurrence rate of the common cause).

The same applies if components of the same type are checked in different intervals.

All data must be adopted to the defined safety function in a specific application, since the

safe failure fraction and the fault detection time might be completely different. Imagine a

computer: In one application a fault of the microprocessor might not be hazardous as long

as it is detected, since the machinery (EUC) can enter a safe state. In another application

there is no safe state (of the EUC), therefore a fault of the microprocessor is hazardous even

if it was detected immediately. For this reason a THR or TFFR must always be defined in

combination with a well described hazard/failure — a component as such has no “hazard

rate” 5 .

The following models are available to describe the occurrence rate, the unavailability and

unreliability of a generic basic event.

Important note: The naming of the failure models is not harmonized. Thus, there might be

fault tree evaluation programs that define the “repairable” or “dormant failure” model and

the “non-repairable” model in different ways, in particular with respect to when the overall

“system lifetime” or “mission time” is used and when an explicit test interval Tcheck is used

for evaluation. The following subsections provide all information that enables you to select

the suitable model. Note that in Functional Safety Suite the system lifetime (“mission time”)

stated in the project properties dialog should always be set to the (maximum) system lifetime

– any test intervals should be considered in the Tcheck parameter of the Repairable failure

mode model, as described in section 4.3.1.

4.3.1 Repairable (incl. dormant failure)

Using this model, the following failure scenarios can be modeled:

• failures directly leading to system failure (and therefore detected immediately) or

• failures leading to system failure if some other failures or events exist or occur (dormant

failures), failure is detected by periodic tests.

These failure scenarios are the most common ones, and therefore this model is the one needed

for most failures in machinery, as for example failures of an electric or electronic component,

as well as failures of complex mechanical components such as pneumatic or hydraulic valves.

In Functional Safety Suite the occurrence rate h consists of two parts for convenience

h = h(t) = D · λop + (1−D) · λsb (1)

where D is the duty cycle (0 < D ≤ 1) 6 , λop is the failure rate in operation (0 < λop

[1/h]) and λsb is the failure rate in standby (0 ≤ λsb [1/h]). If there is only a single mode of

operation, set D = 1.0 and λsb = 0.0.

5also see [EN 50126]
6usually dc is used as symbol for the duty cycle, but this is already used for the ‘diagnostic coverage’ in the

field of functional safety
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Figure 9: Values of the repairable model

The mean unavailability is calculated by

Q =
e−h·Tcheck − 1

h · Tcheck + h · Trepair · (1− e−h·Tcheck)
+ 1 (2)

with the test interval Tcheck (0 ≤ Tcheck [h]) and the mean repair time Trepair per failure

(0 ≤ Trepair [h]).

For Tcheck → 0, equation (2) tends to

Q =
h · Trepair

h · Trepair + 1
(3)

For Trepair → 0, equation (2) tends to

Q =
e−h·Tcheck − 1

h · Tcheck

+ 1 (4)

The mean occurrence density w is given by

w = h · (1−Q) (5)

The restoration rate µ used in Markov models in steady-state evaluation is given by

µ =
h

Q
− h (6)

In transient evaluation, if Tcheck is greater than 10 times the step time tstep, the current

unavailability Q(t) is given by

Q(t) = 1− (1−Qrepair) · e−(1−Qrepair)·h·((t−t0) mod Tcheck) (7)

with t0 being the time to the first test (the “phase shift” of the test) and Qrepair the (mean)

unavailability due to the repair time Qrepair =
h·Trepair
h·Trepair+1

:

Q(t) = 1− e
−
h · ((t− t0) mod Tcheck)

h · Trepair + 1

h · Trepair + 1
(8)
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The occurrence density w(t) is given by

w(t) = h · (1−Q(t)) (9)

In Markov models the restoration to the origin state is performed cyclically at times ti =

n · Tcheck + t0 + Trepair.

Note that t0 is the same for all basic events referring to this generic basic event, it is not

possible to assign different values to them. This is intended since in practice, all tests related

to a sub-system will be performed at the same time. Of course there might be two sub-systems

of the same type (and thus referring to the same generic basic events), but if they are in fact

tested at different times, they are usually not related to each other, so that one can assume,

that they won’t be affected by common cause failures. In that case, the sub-system should

be modeled by a completely separate model, that is linked to the overall system model by a

Link event.

The maximum unavailability Qmax is given by equation (8) with t = Tcheck:

Qmax = 1− e
−

h · Tcheck

h · Trepair + 1

h · Trepair + 1
≈ 1− e−h·(Tcheck+Trepair) (10)

Often there is no defined test or inspection interval (“proof test interval”), but a component’s

fault will be detected during normal operation in an uncritical situation. In that case this

time can be used as Tcheck. If the component is never tested (thus a fault will not be detected

until the hazard occurs), the test interval Tcheck must be set to the component’s mean lifetime

or the non-repairable model must be used.

This failure model can be used as condition event, see section 4.2.1.1.

4.3.2 Non-repairable

Using this model, the following failure scenarios can be modeled:

• failures directly leading to system failure or

• failures leading to system failure if some other failures or events exist or occur, but not

detected unless other failures occur (hidden failure)

In contrary to the “Repairable” model explained in the previous section, this model is only

suitable, if the failure is very unlikely to occur at all during system lifetime. If the failure

is likely to occur at least once in system lifetime, you should use the “Repairable” model in

order to get realistic results.

Most non-repairable events can be modeled with sufficient accuracy by a Weibull distribution.

The density function f(t) of a Weibull distribution is given as

f(t) = λ · k · (λ · t)k−1e−(λ·t)k (11)
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and the distribution function is given as

F (t) = 1− e−(λ·t)k (12)

The exponential distribution (constant failure rate) is included as special case (k = 1).

Figure 10: Values of the non repairable model

In Functional Safety Suite the failure rate λ consists of two parts for convenience

λ = D · λop + (1−D) · λsb (13)

where D is the duty cycle (0 < D ≤ 1), λop is the failure rate in operation (0 < λop [1/h]) and

λsb is the failure rate in standby (0 ≤ λsb [1/h]). Of course this splitting only makes sense for

k = 1 (constant failure rates), and only in this case λ is actually a ‘failure rate’.

If k 6= 1, the occurrence rate is time variant, given by

h(t) = λ · k · (λ · t)k−1 (14)

The mean occurrence rate is a function of the lifetime T , given by

h(T ) =
F (T )

T∫
0

t · f(t) dt+ T ·R(T )

=
F (T )

T∫
0

t · f(t) dt+ T ·
(
1− F (T )

) (15)

with T being the component lifetime. If no component lifetime is stated in the properties

explicitly, the global system lifetime (mission time) is used. The same applies if the stated

component’s lifetime is greater than the system lifetime (mission time). If the component is

changed in certain intervals preventative, the component’s lifetime is shorter.

For non-repairable, not preventative changed components the unavailability Q(t) is identical

to the unreliability F (t):

Q(t) = 1− e−(λ·t)k (16)

If the component is changed preventative, the unreliability F (t) is only identical to the un-

availability Q(t) for t < T .

The mean unavailability over lifetime Q(T ) is given by

Q(T ) =

T∫
0

F (t) dt

T
(17)
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whereas the maximum unavailability Qmax is given by the unavailability at the end of the

component’s lifetime Q(T )

Qmax = Q(T ) = 1− e−(λ·T )k (18)

The mean occurrence density w is given by

w = h · (1−Q) (19)

and the actual occurrence density in transient evaluation w(t) is given by

w(t) = h(t) · (1−Q(t)) (20)

This model is only applicable, if the assumption, that the component has no fault at t = 0,

is valid.

This failure model can be used as condition event, see section 4.2.1.1.

Specifics for Markov models: The steady-state of a Markov model is the state for which

all transition rates are zero. This means that there must be an equilibrium between for-

ward transition rates and return transition rates. A non-repairable element obviously has

no return rate, thus the steady-state evaluation of a Markov model including one or several

non-repairable events will always result in an accumulation of the probabilities in final states,

what in turn will always result in Q = Q = 1 and w = w = 0. This is equivalent to Q(t→∞)

and w(t→∞), what is in fact the only true steady state. Nevertheless what shall be calcu-

lated typically is a “pseudo steady-state”, where all repairable events are in a steady state,

but not the non-repairable events. Therefore for steady-state evaluation of Markov models

an equivalent return rate µ is defined as

µ =
h

Q
− h (21)

resulting in an unavailability at the end of the component’s lifetime Q(T ) (as if it would have

been calculated by equation 17).

4.3.3 Standby repairable

As the name says, this model is suitable for elements, that are only needed rarely, i. e. in case

of the failure of another element or the occurrence of a rare environmental condition. The

interesting value is the probability, that the element is (not) available, when it is needed (on

demand): the unavailability Q. Since its failure doesn’t trigger a hazard, the occurrence rate

h is zero. In other terms, this model is similar to the ‘repairable’ model, with the restriction

to the unavailability as the interesting value. The overall unavailability of those elements can

typically be modeled by four parts:

• A probability increasing by standby time, modeled by a failure rate in standby mode

λsb. This probability is typically reduced by testing the element every Tcheck hours.
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• A probability that the component is just being repaired due to a detected failure, given

by the mean repair time Trepair per failure.

• A constant value γ representing the probability that the element fails when starting

operation due to some failure occurring just when activating it. (This value can also be

used to model unavailability due to maintenance or due to undetectable failures).

• The unreliability of the element in operation, i. e. the probability that the element

doesn’t perform its intended function during the (mean) operating time per demand

Top, given by the failure rate in operation λop.

Figure 11: Values of the standby repairable model

The constant unavailability resulting from parts two to four is approximately given by

Qconst ≈ e−λop·Top ·
(
λsb · Trepair · (1− γ)

λsb · Trepair + 1
+ γ − 1

)
+ 1 (22)

All values may be zero, resulting in Qconst = 0.

In transient evaluation, if Tcheck is greater than 10 times the iteration time Tstep, the overall

current unavailability Q(t) is given by

Q(t) = (1−Qconst) ·
(

1− e−(1−Qconst)·λsb·(t mod Tcheck)
)

+Qconst (23)

Both λsb and Tcheck must be positive values.

The overall mean unavailability is given by

Q =
e−(1−Qconst)·λsb·Tcheck − 1

λsb · Tcheck
+ 1 (24)

This failure model always represents a condition event, see section 4.2.1.1.

Example

A (cold standby) emergency generator has a probability that it won’t start when it is needed

(given either by its failure rate in power-off state λsb and the test interval Tcheck or directly

a probability γ), and a probability that it fails after successful start, but before the normal

electricity is available again (given by λop and top).
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4.3.4 Cyclic

If an element is needed in certain intervals over the system’s lifetime, or a certain number of

times (once, twice,. . . ) within a mission independent of the length of the mission, this model

might be useful.

Figure 12: Values of the cyclic model

If N > 0 the mean occurrence rate is given by

h = γ ·N/T (25)

with γ being the probability of failure per demand, N being the number of demands within

the system’s lifetime (or per mission) and T being the system’s lifetime (or mission time).

The cycle interval is ∆t = T/N in this case.

If N ≤ 0 the mean occurrence rate is given by

h = γ/∆t (26)

with γ being the probability of failure on demand and ∆t the cycle interval in hours.

If N > 0 the maximum unavailability is given by

Qmax = Q(t = T ) = 1− (1− γ)N (27)

or by

Qmax = Q(t = T ) = 1− (1− γ)T/∆t (28)

if N ≤ 0 respectively.

Note that always the maximum unavailability is used instead of a mean unavailability in

steady-state calculation, in order to be on the safe side in any case. If this seems to be not

adequate or too conservative, please use transient evaluation instead.

The mean occurrence density w is given by

w = h · (1−Q) (29)

whereas the occurrence density w(t) in transient evaluation is given by

w(t) = h(t) · (1−Q(t)) (30)
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respectively.

In case of transient evaluation, if the cycle interval ∆t is greater than 10 times the iteration

time, the transition(s) described by this basic event model are executed at discrete times

ti = n · ∆t + t0 with n ∈ IN0 and t0 being an offset for the first transition. For transient

evaluation, in addition a return delay can be modeled: If the return delay is greater than 0,

the target state is left towards the source state at discrete times ti = n ·∆t+ t0 + Tdelay.

Note that the densities and rates f(t), w(t) and h(t) are in fact Dirac impulses, which will

for finite integration steps scatter to rectangular impulses, whose heights will depend on the

integration step size. Therefore the densities and rates calculated at the steps where the cyclic

events appear, are meaningless.

This failure model cannot be used as condition event, since this doesn’t make sense.

Example

Imagine the events, that the brake pipe is closed when starting a train run, that the gear of a

plane doesn’t lower before landing, that the brake parachutes of the space shuttle don’t open

or the engine of a spacecraft doesn’t restart on demand: In all these cases the mission will

fail at a certain time independent of its (planned) duration.

It is also obvious, that defining THRs as safety targets doesn’t make much sense for problems,

that significantly depend on those events (the longer the mission the lower the failure rate

gets!). Instead, the definition of a tolerable mission failure probability (mission unreliability)

seems more adequate for those problems. This is also the reason why [NASA] always talks

about probabilities instead of occurrence rates, in contrary to e. g. [NUREG].

4.3.5 Immediate

According to [NUREG] it’s implicitly assumed, that an element is unavailable if it had a

failure before. Therefore the unavailability Q(t) is linked to the occurrence rate h(t) and the

test interval. For many basic events this assumption is not fulfilled, but the unavailability

is independent of the occurrence of another event. To be able to model also those elements,

the unavailability Q(t) = Q, the occurrence rate h(t) = h and the restoration rate µ can be

assigned explicitly (“immediately”) to a generic basic event.

Figure 13: Values of the immediate model

The occurrence density is

w(t) = w = h · (1−Q) (31)
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This failure model can be used as condition event, see section 4.2.1.1. In that case, the

probability p = Q must be > 0, the occurrence rate h and the restoration rate µ are ignored.

4.3.6 Link

By links an event tree, fault tree or Markov model can use the result of the evaluation of

another fault tree, Markov model or complex component. Thus several models of the project

can be combined. This might be useful due to the following reasons:

• to split one large model in several small models (“modularization”)

• to reuse the model of a module at multiple positions in one or several higher level models

• to “cut” common cause factors between elements of the lower level and optionally define

new ones on a higher level (between the modules described by the link).

Figure 14: Values of the link model

The referred model is defined by its name.

A linked model is evaluated before the higher level model makes use of it, according to its

specific evaluation parameters. If the upper level model is evaluated in steady-state, a generic

basic event of type link takes the unavailability Q, the occurrence rate h or the unreliability

F (T ) of the referred model — even if the linked model is evaluated for its transients. If the

upper level model is evaluated for its transients, it asks for h(t), Q(t) or F (t). The referred

model will provide either these values or the mean values instead, depending on its evaluation

mode.

Obviously, the linked model must calculate the values required by the upper level model:

• If a generic basic event of type link is used in an event tree, Q of the referred model is

transferred to the event tree.

• If a generic basic event of type link is used in a steady-state evaluation of a fault tree,

F (T ) or Q and h of the referred model are transferred to the fault tree. In a transient

evaluation of a fault tree, F (t) or Q(t) and h(t) are requested from the referred model.

If only the steady-state values of the referred model have been calculated, F (T ) or Q

and h are used instead. If the condition event flag is set (see section 4.2.1.1), only Q or

Q(t) are transferred.

• If a generic basic event of type link is used in a Markov model, in steady-state evaluation

either Q or h of the referred model are transferred to the Markov model, in transient
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evaluation either Q(t) or h(t) is requested respectively. Whether the unavailability or

the occurrence rate is used, is defined by the condition event flag: If the link is marked

as condition event, the unavailability is considered. If only the steady-state solution of

the referred model has been calculated, the mean value Q or h is used instead.

Table 2 provides an overview about which values are required by which kind of link.

Table 2: Values required by links

Upper level model

type

Calculation of1 Condition2 Required value(s) Lower level calcu-

lation value(s)

Fault tree, RBD * yes Q Q or h and Q

Fault tree, RBD Q * Q Q or h and Q

Fault tree, RBD h and Q no h and Q h and Q

Fault tree, RBD F (direct)3 no F F

Fault tree, RBD F (via h and Q)3 no h and Q h and Q

Markov model * yes Q Q or h and Q

Markov model * no h h and Q

Event tree n/a (yes) Q Q or h and Q

1 see section 7.5.1.1 for fault trees or section 9.5.1.1 for Markov models
2 see section 4.2.1.1
3 see section 7.5.2.3

An asterisk ‘*’ in table 2 means any value (“don’t care”). See section 7.5.1.1 for fault trees

or section 9.5.1.1 for Markov models for how to set the correct calculation values.

Note that the higher level model gets no information about the structure of the linked model,

thus if basic events in the higher level model and in the linked model refer to the same

generic basic event, no common cause factor is considered. This behavior is typically useful,

but sometimes not correct. Therefore also a generic basic event of type link can be assigned

a common cause factor just as for all other types of generic basic events. This common cause

factor is considered between all basic events referring to this generic basic event within a fault

tree or reliability block diagram, and also within fault trees connected by transfer-in gates

(since fault trees connected by transfer-in gates are treated as one fault tree in evaluation,

see section 7.5).

In any case, the model using the link gets no information of the structure of the referred

model(s). Thus common cause factors defined for basic events of the referred models are not

considered in the higher level model. Nevertheless sometimes it is useful to define a common

cause factor between modules of a system. This is possible by setting a common cause factor

here.

Note that you can open/jump to the linked model by double-clicking the case, the basic event

or the edge.
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Specific for Markov models: Only the forward direction of the transition can be defined

by a link. But in fact, sometimes also a transition back to the source state exists and thus

needs to be modeled. For steady-state evaluation an equivalent restoration rate µ is calculated

as

µ =
h

Q
− h (32)

In transient evaluation this is not possible since h(t) has no relation to Q(t). Therefore it is

possible to define a restoration rate in the same manner as for a repairable element by setting

a test interval Tcheck > 0 and optionally in addition a repair time Trepair and the offset (phase

shift) t0 of the test.
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5 Event trees

5.1 Introduction

Event tree analysis is a universal method of a quantitative risk analysis. Starting with the

identified hazard, all possible direct consequences due to the possible cases of one condition

are identified. Each possible case of the condition is assigned a probability. Only one case of

the condition can be true at a particular time, thus one case excludes all other cases of this

condition. A condition typically describes the existence of a certain constraint outside the

technical system, e. g. the presence of people in the danger zone. For each case of the first

condition, the subsequent consequences due to the cases of another condition are identified

and so forth, up to a final consequence. This final consequence is the damage, characterized

by its severity. If the consequence is “no damage”, its severity is zero.

The risk R related to a certain hazard is the sum of all n severities si multiplied by the specific

probability pi of occurrence of this severity si if the hazard occurs and finally the hazard rate

hhazard:

R = hhazard

n∑
i=1

(
psi|hazard · si

)
(33)

A risk graph is just a simple event tree, thus a risk graph can easily be replaced by an event

tree.

Features of Functional Safety Suite related to event trees:

• Conditions with more than two cases.

• Several models for cases, including links to fault trees, Markov models and complex

components.

• Two evaluation modes (see section 3.4.3 for selection):

– Calculation of the risk R, given a hazard rate hhazard

– Calculation of the tolerable hazard rate (THR), given a tolerable risk

5.2 The Event Tree Properties Panel

Properties of the overall event tree are displayed and edited in the event tree properties panel,

see figure 15. All these values are stored in the event tree file (extension .etf).

5.2.1 General Properties

Description:

A user defined description of the event tree.

5.2.2 Presentation Properties

Note that in case the presentation related features don’t fulfill your needs, you can export all

graphics in SVG format for further processing by vector graphics tools.
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Figure 15: The event tree properties panel

Horizontal offset:

The margin between the window border and the left end of the hazard line.

Vertical offset:

The margin between the window border and the first damage.

Condition width:

The width of each condition column. Default is 150 pixel.

5.2.3 Values

Tolerable Risk:

If the THR shall be calculated according to the selection in the project properties dialog, here

the tolerable risk is to be entered. The unit is Damage Equivalents per hour (DE/h).

Actual Hazard Frequency:

If the risk shall be calculated for a given hazard frequency according to the selection in the

project properties dialog, here the hazard frequency is to be entered.

5.3 The Condition and the Crotch Properties Panel

Each pass from one consequence to the consequence(s) of the next condition is a crotch.

Each condition has as many crotchs as there are lines in the preceding condition: The first
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condition C1 has one crotch, since there is only one hazard. The second condition C2 has

as many crotchs as the first condition has cases nC1, the third condition C3 has nC1 · nC2

crotchs and so on (except if the always flag is set, see below).

A condition is always selected together with one of its crotchs and vice versa, i. e. when you

click on the default case or always case. Therefore the condition properties panel and the

crotch properties panel are shown at the same time.

The parameters of conditions and crotches are stored in the event tree file (extension .etf).

Figure 16: The condition and the crotch properties panels

5.3.1 Condition Properties

Name:

A user defined identifier of the condition.

Description:

A user defined description of the condition.

5.3.2 Crotch Properties

The lowest case of each crotch is usually the default case, which is the negated of all other

cases of the crotch. However often due to the specific case of the previous condition, the cases

of further conditions don’t matter any more. If so, select the crotch by clicking on the default
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case and set the always flag in the crotch properties panel on the left – the crotch will be

reduced to only one case with probability p = 1.0. If you de-select the flag, the crotch will be

expanded again, replicating the further branch for each case of the condition.

Note that selecting a crotch by clicking on the default case or the always case will also select

the related condition.

5.4 The Case Properties Panel

A case of an event tree consists of the reference to the generic basic event, defined by its

package and name, and the properties of this generic basic event.

Figure 17: The case properties panel

5.4.1 Case Properties

Package:

Select whether the generic basic event is in the library of the global package or of the local

package.

Name:

The identifier of the generic basic event. You can select a name (and by this the referred

generic basic event) out of a list of the generic basic events belonging to the selected package.
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5.4.2 Generic Basic Event

All parameters in this section belong to the generic basic event, thus they are stored in the

library. Whenever one of these values is changed, this will effect also all other basic events

and cases referring to this generic basic event, even in other models.

5.4.2.1 General Properties

Description:

A user defined description of the generic basic event.

5.4.2.2 Model

The probabilistic model of the generic basic event. See section 4.3 for details.

5.4.2.3 Values

The values needed by the model of the generic basic event. See section 4.3 for details.

5.5 The Damage Properties Panel

The final consequence is called damage, even if the severity is 0 (“no damage”). Typically

several paths (via different cases) will lead to the same final scenario. Each possible scenario

is called generic damage, describing its severity. The list of generic damages is part of the

event tree and therefore stored in the .etf file. For each path, the severity can be selected

out of the list of generic damages.

Figure 18: The damage properties panels
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5.5.1 General Properties

Name:

A user defined identifier of the generic damage. Since damages with same name refer to the

same generic damage, all other damages with the same name will be changed too whenever

a property belonging to the generic damage is changed in the damage properties panel.

You can select a name (and by this the referred generic damage) out of a list of the generic

damages already created for this event tree.

Description:

A user defined description of the generic damage.

5.5.2 Values

The damage equivalent, indicating the severity of the damage.

5.6 Editing of event trees

After creation of a new event tree by File – New Event Tree a most simple event tree is

shown.

The hazard is represented by the leftmost horizontal line. I can be selected by clicking on

this line or somewhere above or below. If the hazard is selected, it is marked by a thicker,

blue line and the event tree properties panel is shown on the left.

The damage is shown as rectangle on the right, including its name (“Default”) and its severity

in units of Damage Equivalents (DE). The name is given by the underlying generic damage.

It is selected by clicking on it. If selected it is marked by a thick, blue border and the damage

properties panel is shown on the left.

Usually there is not only one single, immediate consequence if the hazard occurs, but also

other consequences leading to different damages, due to one or multiple conditions. A new

condition is created and inserted by selecting the hazard (or a previous condition, see below)

and Edit – Add Condition.

Each condition can take one or multiple cases. Each case has a certain probability that it is

true when the hazard occurs. The sum of the probabilities of all cases of one condition must

be equal to 1. Thus there is a default case, that applies if no other case is true. When a new

condition is created, only the default case is created.

A condition is selected by clicking anywhere in the column belonging to the condition except

on a line representing a specific case. If a condition is selected, its name and description is

shown in blue text and the condition properties panel is shown on the left (see figure 16), so

that name and description can be edited.
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After selecting a condition, a case can be added to the condition by Edit – Add Case. Each

case refers to a generic basic event, which determines its probability. Typically the immediate

event model is used, allowing to directly enter the probability p. But also all other models

that deliver a unavailability Q can be used, including links. When adding a case, the new

case will refer to the last generic basic event in the local library.

A case is selected by clicking on one of the lines representing it. If selected it is marked by a

thick, blue line and the case properties panel is shown on the left (see figure 17). Here you

can change the generic basic event the case refers to. A new generic basic event is created by

Library – New Generic Basic Event.

An event tree that has not been saved after the latest modification is marked with an asterisk

‘*’ in its title.

5.7 Hints and recommendations

If there are (multiple) conditions that must be fulfilled such that a (severe) damage can occur,

the definition of the hazard is not unambiguous. For example think about a fire in a plane.

You can define the burning paper in the toilet as a hazard, but you could also define the

burning toilet room as a hazard, or you could consider all kinds of fire in other hazards, like

loss of control equipment, loss of clean cabin air or loss of structural stability. Therefore you

should clearly describe the relation between the identified hazards, thus that the sum of all

hazard analyses has neither gaps nor significant overlaps. In particular, you should verify,

that all identified hazards are “on the same level”, i. e. that not one “hazard” is in fact just

one basic event for another already defined “real” hazard.

In addition, depending on the definition of the hazard(s), the border between risk analysis and

hazard analysis will shift significantly. As a general rule, you should never model barriers in an

event tree, that rely on the correct function of technical elements (“active barriers”, barriers

that can fail on demand, i. e. PFD > 0) that are part of the system under assessment, but

only barriers that either exist independently of the system under assessment or that cannot

fail on demand (PFD = 0, i. e. “passive barriers”). That means, that the hazard should

be defined in that way, that it includes the failures of all technical elements (as for example

smoke detection and fire suppression systems).

If you — for whichever reason — consider active barriers in an event tree anyhow, it is

mandatory to limit the PFD’s to values, that reflect the systematic capabilities of the active

barrier. E. g. for a barrier developed according to [EN 61508] for a safety integrity of SIL 2,

its unavailability must not be set to values less than 1e-3 even its calculated PFD (by FTA or

Markov model) is less. In addition, absence of common cause failures to the hazard or other

barriers must be proven.
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6 Architectures

6.1 Introduction

For each safety function, an architecture has to be created. If the architecture is simple, the

standard electric (or pneumatic or hydraulic) schematic might be sufficient to describe the

architecture. But in case of complex architectures, involving several sensors, relays, valves,

computers etc. you should describe the architecture by means of block diagrams, supported

by some verbal explanation. There are several norms related to electrical, pneumatic and

hydraulic schematics for application in different areas such as machinery, automotive, process

industry, railways or aerospace. The main purpose of all of these standards is to define the

connections between components, i. e. which cable or pipe is necessary between which con-

nector of a component or junction. None of these standards is focused on the functionality,

or even functional safety. Therefore, according to the author’s knowledge, whenever a func-

tional block diagram is required, each company or even each engineer has created its own

“block diagram language”. Depending on effort and experience of the engineer or company,

the quality of these block diagrams in terms of readability and level of detail differs quite a

lot.

The architectures module of Functional Safety Suite aims to provide a functional block dia-

gram language that is able to describe safety architectures in all fields of engineering. In a

first step, you can use the module to draw functional block diagrams, requiring significantly

less effort than using generic drawing tools. In a second step, an architecture can be automat-

ically converted to a fault tree, given that some principles are respected and some additional

information is provided.

6.2 Concepts

Each architecture consists of architecture components, see section 6.2.2. Each architecture

component consists of one or multiple component parts, see section 6.2.1. Each component

part is assigned a component part symbol used to visualize the component part and thus

finally the component. Each component part has zero, one or two pins, which are necessary

to connect the component to a net, see section 6.2.3.

Figure 19 shows a simple architecture.

6.2.1 Component parts

There are four types of component parts:

SOURCE a SOURCE has one pin providing some information, energy or material. It can

also be used to represent some process state, such as a physical entity like speed or

temperature.

SINK a SINK has one pin receiving information, energy or material.
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Figure 19: Simple architecture

CONTACT a CONTACT has two pins. Depending on some other component part, there

is an internal connection between the two pins or not, i. e. energy or material can

pass from pin 1 to pin 2 or not. If the net represents an electric wire (and the contact

represents an electric contact, therefore) the state representing connected pins is called

“closed”, the state representing disconnected pins is called “open”. If the net represents

a pneumatic or hydraulic pipe (and the contact represents a valve, therefore) the state

representing connected pins is called “open”, the state representing disconnected pins

is called “blocked”.

LOGIC a LOGIC part combines information, energy or material to new information, energy

or material. It has no pins. A architecture component using a logic part must have

at least one component part of type SINK and at least one component part of type

SOURCE or CONTACT as well.

For each component part type, several common symbols are provided in the default symbol

library. You can modify these symbols or create additional symbols in either this library or

project specific libraries, see section 6.7.

6.2.2 Architecture components

As written above, an architecture component consists of one or multiple component parts.

There are five classes of architecture components:

SOURCE a component of class SOURCE consists of one component part of type SOURCE.

It may be a source of information (e. g. a human), energy (e. g. a power line) or material,

or just describe the state of a process such as speed or temperature. Each architecture

shall have at least one component of class SOURCE.

ACTOR a component of class ACTOR consists of one component part of type SINK. Each

architecture shall have at least one component of class ACTOR.

RELAY a component of class RELAY consists of one component part of type SINK and

at least one component part of type CONTACT. It can be used to model switches

and push-buttons, valves, or any other kind of component that has at least one output

CONTACT (or valve way) which state depends on exactly one input.



6 ARCHITECTURES 55

LINE a component of class LINE consists of one component part of type SINK and one

component part of type SOURCE. It is used to explicitly model transmissions, such as

repeaters, converters, sensors or couplers.

CONTROL a component of class CONTROL consists of one component part of type

LOGIC, at least one component part of type SINK and at least one component part

of type SOURCE or CONTACT. It is used to model more complex functional blocks,

such as programmable logic controls, but can also be used for any other component

with multiple inputs (e. g. a 3-position direction control valve).

Thinking about drawing block diagrams, the concept of components and component parts

might look a bit complicated and over-engineered. The reason for having these definitions is

in fact to enable Functional Safety Suite to automatically derive fault trees from architectures.

But even if you don’t use automatic fault tree creation, the concept will help you to create an

architectural description that clearly shows the components that are relevant for safety and

their interaction – not more and not less.

Let’s go back to the architecture shown in figure 19. There are three architecture com-

ponents of class SOURCE: ‘User’, ‘V+’ and Process’. The component ‘Push-Button’ is of

class RELAY, using a part of type SINK (the button) and a part of type CONTACT (the

contact named ‘c1’). The component ‘Sensor’ is of class LINE, using a part of type SINK

(including the left hand pin and some elements of the graphics) and a part of type SOURCE

(including the right pin and some other elements of the graphics). The component ‘control’

is of class CONTROL, using two parts of type SINK (‘AIN1’ and ‘D IN1’), a part of type

LOGIC (‘PLC’) and a part of type CONTACT (‘DOUT1’). The component ‘Actor’ is of

class ACTOR and uses one part of type SINK.

6.2.3 Nets and Pins

Each pin must be connected to at least one other pin by some net. A net represents a logical

or physical connection, the user pressing a button, the temperature affecting the sensor, or

of course the voltage of the source ‘V+’ connected to the push button contact and control

output. In order to simplify reading of an architecture, different types of connections are

distinguished by different line styles. The type is also considered when a fault tree is derived

from the architecture, but only for some plausibility checks.

There are two types of pins: A square marks an output pin, a circle represents an input pin.

If you want to derive a fault tree from your architecture, the rules stated in section 6.6.1 have

to be fulfilled. In particular, each net needs exactly one output pin usually. Multiple outputs

might be possible according to the rules stated in section 6.6.1.

6.3 The Architecture Properties

Figure 20 shows the architecture properties, including presentation related properties and

some information for deriving fault trees.
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Figure 20: The architecture properties panel and an open component pop-up menu

6.3.1 General Properties

Description:

A user defined description of the architecture.

6.3.2 Output Failure Function

In case of multiple actors, you have to state which combination of actor failure is critical

before you can derive the fault tree, see section 6.6.3.

6.3.3 Display Settings

Here you can define which of the information relevant for deriving a fault tree is shown or not.

By default, neither the failure mode names (name of the generic basic events connected to a

component part are not shown, nor the combinations of input failures in case of architecture

components of type Logic. These checkbox values are not saved.
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6.4 Component and Component Part Properties

If you click into a component part, both the properties of the architecture component, the

selected component part belongs to, and the properties of the component part will be shown

on the left for editing, see figures 21 and 25.

Figure 21: The component and component part properties panel of a CONTACT

6.4.1 Component General Properties

The type of the architecture component is stated, followed by a field for editing the name

and an optional description. Note: You may assign the same name to multiple architecture

components in order to state, that this is actually only one single unit, e. g. a PLC with is

used at different locations in the architecture(with different inputs and outputs).

6.4.2 Component Part Properties

6.4.2.1 General Properties

Choose a name for the selected component part and select a component part symbol out

of the available symbols for this component part’s type and the selected symbol library. If

the selected architecture component consists of multiple component parts, you will switch off

showing the architecture component name for all component parts except of one. Sometimes

you might also want to switch off showing the component part’s name.

6.4.2.2 Failure Event Properties

Each component part can be assigned exactly one failure mode, which is a reference to some

generic basic event in the library of this package or the global package. When creating a fault
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tree for this architecture automatically, a basic event will be created for this component part,

referring to the given generic basic event. The suffix of the basic event will be derived from

the name of the architecture component and the name of the component part. See section 4

for details of the failure modes, and section 6.6 for how to derive a fault tree.

Further properties of the component part will depend on the types of the selected architecture

component and component part:

6.4.2.3 Output Level

If the selected component part is of type SOURCE, the output level has to be selected. See

section 6.6.1 for how to use output levels and input fail safe types.

6.4.2.4 Input Fail Safe Type

If the selected component part is of type SINK, you can state whether there is some safe side

input. See section 6.6.1 for how to use output levels and input fail safe types.

6.4.2.5 Output Failure Function

If the selected component part is of type SOURCE or CONTACT and is part of a architecture

component of class CONTROL, and the architecture component has multiple inputs, you

have to state, which combination of faulty inputs will lead to a failure of the output, see

section 6.6.2.

6.4.3 Changing the component’s structure

If you right-click on a architecture component, a menu will pop-up, see figure 20. You can in

particular add another component part to a component, change the sequence of the component

parts within a architecture component, or flip or rotate the complete architecture component.

Deleting a component part is only possible if it is not connected to a net.

The possibilities to add or delete component parts depends on the class of the architecture

component and its limitations, of course.

6.5 Net Properties

Pins of component partsare connected by nets.

6.5.1 Net General Properties

You can give a label to a net, which will be shown beside of the longest section of the net.

If you don’t, a default label will be used. Labels starting with ‘net’ won’t be shown in the

graphics.
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6.5.2 Net Type

The net type will change color and width of the lines of the net. In addition, the available

safe side options of inputs connected to the net might be reduced for some types. The gate

descriptions of a derived fault tree will also depend on the net type.

6.6 Deriving a Fault Tree

Functional Safety Suite can automatically derive a fault tree for a given architecture, if certain

structural requirements are fulfilled and some additional information is given:

• each pin must be connected to a net,

• each net must be connected to at least one source, which might be a component part

of type SOURCE or the output pin of a component part of type CONTACT,

• each net must be connected to at least one component part of type SINK.

Figure 22 shows a typical control loop: An oven burning some liquid fuel is used to heat

something to a given temperature. The temperature set-point is entered by a used via a

terminal, connected to a PLC ‘ControlPLC’. The actual temperature is measured by a sensor,

which is connected to a PLC as well. The PLC controls a proportional valve, controlling the

fuel flow to the oven. If the oven temperature exceeds some maximum, a hazard occurs.

Figure 22: Converting an architecture to a fault tree.

Given a suitable control algorithm in the PLC, this system might work fine, as long as none

of the components fail. But in reality, some of the components can fail: The input terminal

can falsify the entered value, the PLC can output a wrong analog value to the valve due

to an internal fault, the valve can be stuck, the temperature sensor can output a value not

reflecting the actual temperature. These failures are considered by assigning a generic basic

event to one of the component parts of each of these architecture components– visualized by

a red rectangle around the symbol of the component part. Many more failure modes can be

distinguished, of course, and in fact you could assign a failure mode to each of the component

parts. However, usually it is possible to consider all failure modes of a component within one

single failure event. Only in case a architecture component of class CONTROL or a RELAY

has multiple outputs, you might usually want to assign separate failure modes (generic basic
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events) to each of the output component parts. The oven itself cannot fail dangerously, it just

burns the fuel that it gets. Therefore, no failure mode is assigned to any of the component

parts of the oven.

The name of the referred generic basic event is not shown by default, but it can be shown by

selecting ‘Show failure mode names’ in the ‘Display Settings’ in the properties panel.

If you click Edit – Convert to Fault Tree, Functional Safety Suite will try to create a

fault tree representing the failure characteristic of this architecture. The algorithm will parse

the architecture starting with the actor(s). Here, we have only one component part of class

ACTOR, the ‘Temperature’. The ‘Temperature’ fails, if the oven doesn’t work as expected.

As long as the oven gets the correct amount of fuel, it is assumed to behave as expected (no

failure mode assumed). Thus, the ‘Temperature’ can only fail, if the fuel flow to the oven

doesn’t fit. The fuel flow is determined by the proportional valve – if the valve doesn’t close

correctly, the fuel flow will be too high and the temperature will fail (become too high). The

valve fails, if it is either defect, OR if it gets a wrong voltage by the control PLC. The PLC

output fails, if either the PLC itself is defect, OR if a wrong set-point is sent by the terminal,

OR if the temperature value used by the control algorithm is not correct (see section 6.6.2

for how to tell the algorithm which gate(s) to create for an output of a CONTROL). The

temperature value is not correct, if the temperature sensor is defect.

In the next recursion, the algorithm would follow the input of the sensor via the oven back

to the valve again – and also again to the PLC, and so on. In fact, the algorithm would

detect that there is a loop and abort conversion, but it will not automatically resolve this

situation. You have to tell the algorithm explicitly, that it shall not trace down further. This

is achieved by setting the Input Fail Safe Type of the temperature sensor to ‘no dangerous’ in

the properties of the input component part, see figure 25. The input pin will now be presented

in green color. In figure 23 the resulting fault tree is shown.

Obviously, there are only OR gates created in this conversion – what is correct in this case.

There are three principles how to define redundancies and fail-safe behavior, finally leading

to AND gates in the conversion, where appropriate:

A. By stating levels of sources and fail safe characteristics of inputs, see section 6.6.1.

B. By defining failure functions for outputs of architecture components of class CONTROL,

see section 6.6.2.

C. In case of multiple actors: by defining a failure function for the actors, see section 6.6.3.



6 ARCHITECTURES 61

Figure 23: Fault tree for architecture shown in figure 22.
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6.6.1 Input Fail Safe Types and Source Output Levels

In order to derive a fault tree from a given block diagram, the logical architecture in terms of

redundancies or monitoring channels must be known. For this task, additional information is

necessary in general.

Figure 24: Usage of safe low or open input type.

Without further information, the diagram shown in figure 24 could be interpreted as

• The output voltage fails (is not available), if the source fails OR the contact is open.

• The output voltage is too high, if the source creates too high voltage AND the contact

is closed.

There is no way how the algorithm could determine by itself, which of both interpretations is

meant by the creator (i. e. for which reason the relay has been added). But this information

is mandatory, since in the first case, an OR gate has to be created, whereas in the second

case an AND gate has to be created.

The necessary information is stated in terms of the Input Fail Safe Type of an input in

combination with the Output Level(s) of the source(s) connected to a path. The term path

denotes the overall connection from the output pin of a component part of type SOURCE to

the input pin of a component part of type SINK. A path may contain multiple nets, which

are separated by component parts of type CONTACT.

There are five Output Levels defined for sources (refer to figure 25):

• (weak) unknown

• weak low

• weak high

• strong low

• strong high

Together with the Input Fail Safe Types all typical architectures can be described as defined

below. The following definitions are based on the assumption, that a strong source can fail

only open (i. e. doesn’t provide anything, but a strong high source cannot turn into a low
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Figure 25: The component and component part properties panel of a SOURCE and a SINK

(being part of a architecture component of class ACTOR)

source by fault and vice verse), whereas a weak source can fail to the opposite (i. e. a weak

high source can turn into a weak low source by fault and vice verse):

• The default Input Fail Safe Type is No safe state, which leads to an OR gate independent

of the source(s).

• The No dangerous option is used, if no event shall be created for the signal connected

to this input, i. e. in order to explicitly stop the algorithm from following the signal

further down. It is typically used for sensors, as shown in figure 22 and in figure 24.

• Safe low states that the input must be connected to a low source, in order not to fail.

Therefore, the following rules apply:

– there must be a path to at least one strong low source or to a weak low source.

– there must be at most one weak source (weak low source, weak high source or

(weak) unknown source)

– if the net is connected to a strong low source and doesn’t contain a weak low

source:

– The input fails if all paths to strong low source(s) fail (any contact of each path

fails) or the source(s) fail.
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– if the net is connected to a strong low source and contains a weak low source:

– The input fails if all paths to strong low source(s) or the source(s) fail AND the

path to the weak low source fails (any contact of the path fails) or the weak low

source fails.

– if the net is not connected to a strong low source (but a weak low source, see first

rule):

– The input fails if the path to the weak low source or the weak low source fails.

• Safe high is the opposite: it states that the input must be connected to a high source,

in order not to fail. Therefore, the following rules apply:

– there must be a path to at least one strong high source or to a weak high source.

– there must be at most one weak source (weak low source, weak high source or

(weak) unknown source)

– if the net is connected to a strong high source and doesn’t contain a weak high

source:

– The input fails if all paths to strong high source(s) fail (any contact of each path

fails) or the source(s) fail.

– if the net is connected to a strong high source and contains a weak high source:

– The input fails if all paths to strong low source(s) or the source(s) fail AND the

path to the weak high source fails (any contact of the path fails) or the weak high

source fails.

– if the net is not connected to a strong high source (but a weak high source, see

first rule):

– The input fails if the path to the weak high source or the weak high source fails.

• The Safe open option indicates an input that is safe, if not connected to a source.

Therefore, the following rules apply:

– the input fails if any of the paths to any sources fails (OR gate for parallel paths).

– a path fails, if all contacts fail AND the source fails (if no failure event is assigned

to the source, the source is ignored).

• the Safe low or open option states, that the input must either be connected to a low

source or not connected to any source in order not to fail. Therefore, the following rules

apply:

– there must be a path to at least one strong low source or to a weak low source.

– there must be at most one weak source (weak low source, weak high source or

(weak) unknown source)

– if the net is connected to a strong low source and doesn’t contain a weak source:

– The input cannot fail, because it is always low or open.
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– if the net is connected to a strong low source and there is a weak high source or

(weak) unknown source:

– The input fails if the path to the weak source fails (all contacts fail) AND all

paths to strong low source(s) fail (any contact in each path fails) or the strong low

source(s) fail.

– if the net is connected to a strong low source and contains a weak low source:

– The input fails if all paths to strong low source(s) fail (any contact in each path

fails) or the strong low source(s) fail AND the path to the weak low source fails

(all contacts fail) AND the weak low source fails (if it can fail, else the weak low

source is ignored).

– if the net is not connected to a strong low source (but a weak low source, see first

rule):

– The input fails if the path to the weak low source fails (all contacts fail) AND

the weak low source fails (if it can fail, else the weak low source is ignored).

• the Safe high or open option is just the opposite: it states, that the input must either be

connected to a high source or not connected to any source in order not to fail. Therefore,

the following rules apply:

– there must be a path to at least one strong high source or to a weak high source.

– there must be at most one weak source (weak low source, weak high source or

(weak) unknown source)

– if the net is connected to a strong high source and doesn’t contain a weak source:

– The input cannot fail, because it is always high or open.

– if the net is connected to a strong high source and there is a weak low source or

(weak) unknown source:

– The input fails if the path to the weak source fails (all contacts fail) AND all

paths to strong high source(s) fail (any contact in each path fails) or the strong

high source(s) fail.

– if the net is connected to a strong high source and contains a weak high source:

– The input fails if all paths to strong high source(s) fail (any contact in each path

fails) or the strong high source(s) fail AND the path to the weak high source fails

(all contacts fail) AND the weak high source fails (if it can fail, else the weak high

source is ignored).

– if the net is not connected to a strong high source (but a weak high source, see

first rule):

– The input fails if the path to the weak high source fails (all contacts fail) AND

the weak high source fails (if it can fail, else the weak low source is ignored).

In the architecture shown in figure 24, the safe state safe low or open is used, in combination

with a weak low source, telling the conversion algorithm that a loss of the output voltage
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‘Vout’ doesn’t matter, but only a (too) high ‘Vout’. The source ‘Source1’ is usually ‘low’,

i. e. correct in the view of the algorithm. Only if the ‘Source1’ is faulty (provides too high

voltage) AND the contact ‘c1’ of relay ‘K1’ doesn’t open, the output voltage ‘Vout’ will fail

(be too high). The resulting fault tree is shown in figure 26.

Figure 26: Fault tree for architecture shown in figure 24.

In figure 27 an example using the safe low and the safe open input types is shown:

Standard railway brakes are applied, if the brake pipe pressure is below 3.5 bar. If the brake

pipe pressure is 5.0 bar, the brakes are released. Between 3.5 bar and 5.0 bar, the brakes are

partially applied. The brake pipe pressure is controlled by some electro-pneumatic equipment,

here shown as a brake pipe control unit ‘BPC’, based on the position of the ‘Brake Handle’

and information from other systems, e. g. automatic speed controls or safety systems. The

automatic train protection system ‘ATP’ shown in figure 27 commands an emergency brake

by cutting the voltage of the coil of two emergency brake valves ‘EBV1’ and ‘EBV2’, which in

turn open a wide section towards the open air each, so that the brake pipe pressure will drop
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Figure 27: Usage of safe open and safe low input types.

to some very low value, even if the weak low source ‘Pressure out’ of the brake pipe control

unit ‘BPC’ provides a high pressure (>3.5 bar). In addition to this hard-wired cut-off, it is

assumed that the ATP provides the brake command via CAN bus to the ‘BPC’ in addition,

and that the ‘BPC’ creates a brake pipe pressure according to the most restrictive input

information (in absence of faults).

The safe low actor ‘brakes’ only fails (to create brake effort), if there is neither a connection

to any of the strong low sources ‘Open Air’ by fault AND the ‘BPC’ provides high pressure

by fault. The resulting fault tree is shown in figure 28.

The coil of ‘EBV2’ in figure 27 is marked as safe open in order to indicate, that it is sufficient

if any of the two contacts ‘out2’ or ‘out3’ opens (doesn’t fail), i. e. that an AND gate is created

above ‘out2’ and ‘out3’. Without the safe open marking, an OR gate would be created above

the ‘out2’ and ‘out3’ contacts. The contacts of ‘Safety System 1’ are not considered in the

fault tree at all, since no failure event is referred by any part of the ‘Safety System 1’ and

its inputs. This system is not considered for this function, therefore. In fact you shouldn’t

mention any components not related to the safety function, in order to avoid any wrong gates

in the fault tree.
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Figure 28: Fault tree for the architecture shown in figure 27
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6.6.2 Output Failure Functions

A architecture component of class CONTROL can have multiple inputs (component parts

of type SINK). In that case, you’ve to tell the conversion algorithm which input or which

combination of inputs has to fail, in order to make the output fail, i. e. in which way the

output depends on the input(s). This is done by stating a boolean output failure function for

each output by using the output failure function input window. The window will open when

you press Edit in the Output Failure Function panel of the selected output (see figure 21).

Figure 29: Output failure function input window.

The formula is entered in reverse Polish notation (RPN), because no parentheses () are needed

in RPN. In reverse Polish notation, the operators follow their operands; for instance, to

combine A and B by the boolean OR operator, one would enter A B OR rather than A OR

B. If there are multiple operations, operators are given immediately after their last operand;

so the expression written A AND (B OR C) in conventional notation would be entered A B

C OR AND in reverse Polish notation. Since (B OR C) AND A is equivalent, one could also

enter B C OR A AND.

In functional safety, an ‘M-out-of-N’ operation is needed frequently (the so-called COMBI-

NATION gate). This is no boolean operator, but a combination of boolean operations in

fact, with unknown number of operands. In the failure functions dialog, a COMBINATION

gate is entered by pressing COMBINATION after the second operand and each additional

operand. When you press COMBINATION after the second operand, you’ll be asked to enter

the minimum number of critical failures M for this combination.

The RPN is implemented by a stack. The operator will always be applied to the top one

or two operands on the stack. The stack is shown in the stack field in the dialog (growing

downwards, i.e. the ”top” is the lowest line).

Examples Note: The ‘!’ indicates the NOT operation, ‘*’ the AND operation, ‘+’ the OR

operation.
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Note: The NOT operator has highest priority, followed by the AND operator, and finally the

OR operator. I. e. ((!A) * B * C) + D is equivalent to !A * B * C + D.

Table 3: Examples for how to enter a boolean formula

Formula Input

(i1 + i2 + i3) * i4 i1 i2 OR i3 OR i4 AND

i1 * i2 * i3 + i4 i1 i2 AND i3 AND i4 OR

i1 * i2 * (i3 + i4) i1 i2 AND i3 i4 OR AND

(or i1 i2 i3 i4 OR AND AND)

(i1 + i2) * (i3 + i4) i1 i2 OR i3 i4 OR AND

(i1 + i2 + i3) * i4 + i2 * (i1 +

!i3 * !(i1 + i4))

i1 i2 OR i3 OR i4 AND i2 i1 i3 NOT i1 i4 OR NOT AND

OR AND OR

(or i1 i2 OR i3 OR i4 AND i1 i4 OR NOT i3 NOT AND

i1 OR i2 AND OR)

i1 * 2-out-of(i2,i3,i4,i5) i1 i2 i3 COMBINATION (2) i4 COMBINATION i5

COMBINATION AND

i1 * 2oo(i2 + i3, i4 + i5, i6 + i7) i1 i2 i3 OR i4 i5 OR COMBINATION (2) i6 i7 OR COM-

BINATION AND

6.6.3 Actor Failure Functions

If there are multiple architecture components of class ACTOR, you have to tell the algorithm

which combination of failures of actors makes the overall system fail. This is done in the

same way as for the output of a CONTROL. The window will open when you press Edit in

the Actor Failure Function panel of the overall architecture, which is shown when nothing is

selected (see figure 20).

6.6.4 Options

In the project properties dialog you can select whether the derived fault tree is automatically

split into sub-trees at certain levels:

• In case of multiple actors, the top tree will refer to individual sub-trees for the failure

of each actor by default.

• Often identic branches are needed at several locations in the fault tree. Branches used

multiple times in the overall tree will be separated as sub-trees by default.

6.7 Symbol Libraries and the Symbol Editor

The symbols available to present a component part are collected in symbol libraries. There is

a default symbol library delivered with Functional Safety Suite (file standard symbols.sym

in the XML directory below the installation directory). When you create a new project, a copy

of the default symbol library will be created in the project directory.
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The symbols can be edited and new symbols can be created using the Symbol Editor, see

figure 30.

Figure 30: The Symbol Editor

As an alternative, the symbol library files .sym can be edited with any text editor (Notepad++,

www.notepad-plus-plus.org is highly recommended). This might be necessary if you want to

copy symbols between different libraries or delete certain symbols you don’t need anymore.

First of all you have to select the library that contains the symbol that you want to edit or

where you want to create the new symbol.

You can create a new project specific symbol library by File – Create new Symbol File

in the menu of the Symbol Editor. The new file will be stored in the project directory and

only be available in this project. You can copy the file manually to another project, it will

be available after (re-)loading the other project without further action.

Then select the type of the symbol you want to change or created in the Type panel. Finally

either select Edit – Create Symbol or select the existing symbol out of the list shown

below.

If you create a new symbol, you’ll be asked for its name in a dialog window. A new symbol

will be created with default size and all available placeholder text fields (see section 6.7.3

below).

6.7.1 Symbol Dimension

Select the symbol size by entering width and height. The dimension will be used to arrange

the symbols or the component parts within a complex component, in combination with the



6 ARCHITECTURES 72

location of the pin(s). Note that the graphic elements (i. e. text, rectangle, ellipse, polygon

lines) are not considered for the arrangement.

6.7.2 Pins

Pins cannot be created or deleted, since they are defined by the symbol type. Thus, they can

only be moved with Shift – Up/Down/Left/Right and only on the grid.

6.7.3 Fix Text and Text Placeholders

A symbol can contain fix texts as well as text fields that will be replaced in the actual

architecture by the name of the architecture component, the component part, the name of

the referred generic basic event (if assigned) or the failure function (only used for outputs).

The names of the placeholders are shown in figure 31.

Figure 31: The Symbol Editor if a text is selected

A new text is added by Edit – Add Text Mode and click where you want to place it.

Change mode to Edit – Select/Modify Mode in order to move the text. If you select one

of the checkboxes, the related placeholder will be assigned to the selected text. Finally select

text size, orientation and color.

6.7.4 Rectangles and Ellipses

A new rectangle is added by Edit – Add Rectangle Mode, a new ellipse is added by Edit

– Add Ellipse Mode, then press the mouse button at one corner and drag the mouse to the
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diagonally opposite corner (in case of an ellipse, it will be fitted inside this virtual rectangle).

Finally select stroke width, stroke color and fill color.

6.7.5 Polylines

A new polyline is added by Edit – Add Polyline Mode. Each click will create a new corner

of the line. The line is finished by pressing Cancel or selecting another Edit Mode. Finally

select stroke width and stroke color.

6.7.6 Move and Resize

You can move and resize graphic elements and pins with the mouse or with the arrow keys

while either Shift or Alt is pressed. If Shift is pressed, the selected item is moved by 5 pixels,

if Alt is pressed by 1 pixel. Pins will always be placed on the grid (if you edit the library

XML file with a text editor, make sure that only multiples of 5 are used for pin coordinates).

6.7.7 Saving the changes

After you’ve modified a symbol or created a new symbol, you’ll want to save it.

If you’ve changed a symbol of the default symbol library, you’ll be asked if you want to

copy all symbols in the (project specific) default symbol library to the overall default symbol

library in the Functional Safety Suite directory (which is used when a new project is created,

see above). If you confirm, all symbols with the same names in the overall default symbol

library will be replaced by those of the project specific default symbol library. If you don’t

confirm, you’ll be asked if you want to copy the currently active symbol the overall default

symbol library.
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7 Fault trees

7.1 Introduction and overview

Fault tree analysis is the most common method for hazard analysis. The algorithms provided

by Functional Safety Suite allow calculations of all values necessary for safety analysis or

reliability analysis. In particular, adequate algorithms for calculation of occurrence rates

related to repairable systems are implemented, therefore fault trees can also be used for

occurrence rate (PFH, failure rate, hazard rate) calculations in accordance to [EN 61508],

[EN 50126], [EN 50129], [ISO 13849], [ISO 26262-5] or similar.

Probably the most cited book related to fault tree analysis is the “Fault Tree Handbook”

[NUREG], published in 1981 by the US Nuclear Regulatory Commission following the Three

Mile Island accident in 1979. In 2002 NASA published the “Fault tree handbook with

aerospace applications” [NASA]. Even though this book refers to [NUREG], its focus is

different and just its existence already shows, that the spectrum of problems is too large to

be explained in one book.

The most remarkable difference is, that in [NASA] the class of technical processes to be

analyzed is a mission characterized by

• a defined start and end time

• no components serviceable or repairable during system lifetime

• no (safety related) undetected faults assumed at t = 0

• no possibility to enter a safe state in case of a failure

• a probability p that the mission fails (equivalent to the unreliability F (0, Tmission))

whereas in [NUREG] as well as in all machinery or transportation related standards such as

[EN 61508], [ISO 13849], [EN 50126], [ISO 26262-5] the problems can be characterized by

• a continuous process without defined start and end time

• maintenance including inspections and tests in certain intervals

• optionally a defined safe state of the overall system ([EN 61508]: ‘equipment under

control’, EUC) that can be taken up in case of a detected failure

• repair possible either during operation or after (save) shut-down of the equipment under

control (EUC)

• either a mean probability Q that all safety systems and (active) safety barriers fail

when required (equivalent to their unavailability) — in [EN 61508] called “probability

of failure on demand” (PFD)

• or a mean occurrence rate h of dangerous system failures — in [EN 61508] called “prob-

ability of failure per hour” (PFH).

Both [NUREG] and [NASA] are available on the Internet for free and describe in detail

the method of fault tree analysis. In addition they provide detailed information of how

to construct a fault tree correctly. Therefore this documentation focuses on the specific

characteristics and the usage of Functional Safety Suite. Note that [EN 61025] does not cover



7 FAULT TREES 75

repairable systems and hence is of very limited use (in particular, it doesn’t cover calculation

of a system failure rate h).

According to [NUREG] a

fault tree is a graphic representation of the various parallel and sequential com-

binations of faults, that will result in the occurrence of the predefined undesired

event.

Typically a fault tree analysis is used on a high level. It is appropriate whenever the architec-

ture of a safety function includes some kind of redundancy. A fault tree analysis is a deductive

method, thus fault trees are always developed top-down (already having basic events in mind

when starting to create a tree is one of the most common mistakes).

A basic event of a fault tree can describe the status of an element of the system (a situation

or condition lasting for a while) or the occurrence of something in just a moment (a failure,

or an action of the operator for instance).

Each basic event is assigned a failure or occurrence model with a specific set of parameters.

Based on these parameters, the (conditional) occurrence rate h (unit 1/h), the unconditional

occurrence rate for repairable elements w (unit 1/h), the (unconditional) failure density f

(unit 1/h), the unavailability Q, and the unreliability F can be calculated for each basic

event. The occurrence rates h or w and the unavailabilities Q of the basic events are needed

to calculate both occurrence rates and unavailabilities of higher level gates. The mean un-

availability Q of the top event is the PFD, its mean occurrence rate h is the PFH. For many

systems, the system unreliability Fsys(0, Tmission), i. e. the probability of mission failure can

directly be calculated based on the unreliabilities F of the basic events. If there are conditions

in the fault tree, i. e. elements that are described by their unavailability Q instead of F , the

system unreliability must be calculated based on the mean occurrence rate hsys or by the

time-dependent failure density fsys(t) = hsys(t) · (1− Fsys(t)).

If used for THR apportionment (often named preliminary FTA), the values for the basic

events are defined based on what seems realistic and achievable with reasonable effort. Thus,

experience is necessary to perform a preliminary FTA. The parameters assigned to each basic

event serve as the tolerable probability of failure on demand (TPFD) or tolerable failure rate

(TPFH, TFFR), that has to be achieved by the responsible system element.

Features of Functional Safety Suite related to fault trees:

• Correct calculation of occurrence rates also for repairable systems.

• Many occurrence/failure models for basic events, including links to other fault trees,

reliability block diagrams, Markov models and complex component.

• Gates of types and, priority-and, inhibit, or, not, combination, reduced combination,

transfer-in.

• Combination gates with an arbitrary number of different inputs.

• Reduced combination gates: Combination gates with up to 170 similar inputs.

• Determination of the minimal cut-sets or prime implicants.
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• Modularization (component fault trees).

• Beta model for common cause factors.

• Conversion of fault trees to (extended) reliability block diagrams.

• Conversion of fault trees to (extended) Markov models.

• Check of fault trees according to [SiRF] rules.

• Steady state evaluation

• Transient (time-dependent) evaluation

Note: The structure of a fault tree is often more important with respect to the correctness

of the derived conclusions than the actual quantitative values. It is absolutely necessary that

the structure of a fault tree reflects reality and that no important events are omitted because

of rules or “political” reasons. All relevant conditions (e. g. responsibilities, maintenance

cycles etc.) must be known in order to enable the safety engineer to develop a correct fault

tree. Where the relevant conditions are not known, assumptions can be used, but these must

be mentioned explicitly. In fact for most systems a small number of critical elements (basic

event) can clearly be determined, e. g. by a importance analysis (see section 11.6.2). It makes

sense to concentrate on elements with high impact and to validate that they are correctly

modeled.

7.2 The Fault Tree Properties

Presentation related properties of the fault tree are edited in the fault tree properties panel

directly, see below. Evaluation related properties are set in the fault tree evaluation properties

dialog, see section 7.5. All properties of the fault tree are stored in the fault tree file (extension

.ftl).

7.2.1 General Properties

Description:

A user defined description of the fault tree.

7.2.2 Presentation Properties

Note that in case the presentation related features don’t fulfill your needs, you can export all

graphics in SVG format for further processing by vector graphics tools.

Horizontal offset:

The margin between the window border and the left edge of the leftmost basic event. Standard

is 5 [pixel] (multiplied by the zoom-factor). A bigger value makes sense for trees with few

basic events in order to create space for the tree description (avoid overlap of description and

top event).
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Figure 32: The fault tree properties panel

Vertical offset:

The margin between the window border and the upper edge of the top event. Standard is 5

[pixel] (multiplied by the zoom-factor).

Event width:

Select the width of the name boxes in fault trees. The description boxes of basic events have

the same width, description boxes of gates are about 20% wider.

Standard is 118 pixel, allowing to display both occurrence rate and unavailability in one line.

If you only want to display unavailabilities or no values at all, you can enter a smaller width.

If you need more space especially in description boxes, you can enter a larger width.

Header X Position:

The margin between the window border and the left side of the header. Standard is 5 [pixel]

(multiplied by the zoom-factor). You can shift the header to the right by setting to a higher

value.

Show values:

If values shall not be shown, you can switch them off here.
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7.3 The Tree Basic Event Properties Panel

A basic event of a fault tree consists of the reference to the generic basic event, an optional

suffix, the ‘second text line’ (for qualitative fault trees only), and the background color.

Figure 33: The fault tree basic event properties panel

The parameters in the ‘Tree Basic Event’ section belong to the specific basic event, which is

part of a fault tree, and thus are stored in the fault tree file (extension .ftl).

The parameters in the ‘Generic Basic Event’ section belong to the generic basic event as

selected by the field ‘GBE name’, and thus are stored in the library.

Remember: Changing parameters in the ‘Generic Basic Event’ section will change the prop-

erties of all other basic events referring to the same generic basic event too.

7.3.1 Tree Basic Event – General Properties

7.3.1.1 Package

Select whether the generic basic event is in the library of the global package or of the local

package.



7 FAULT TREES 79

7.3.1.2 GBE Name

The identifier of the generic basic event, also serving as the name of the basic event. You can

select a name (and by this the referred generic basic event) out of a list of the generic basic

events belonging to the selected package.

7.3.1.3 Suffix

Two possibilities exist with respect to common causes in general (also see section 7.6.1):

1. The same event is needed at multiple positions in the tree(s) (e. g. the system-wide loss

of the main power supply): In this case either none or all of these events are true at a

given time t. In EN 61025 this is called ‘repeated events’ or ‘replicated events’, within

Functional Safety Suite it is called ‘identical events’. To tell the evaluation algorithm

that you mean the same event everywhere, you must provide the same generic basic

event and the same suffix to all of these events (or an empty suffix for all of them).

2. Multiple components of the same type are used in the system in a similar way (for

instance in a 1oo2 or 2oo3-(sub)system). In that case these components will typically

share some common cause failures. Their contribution can be set in the properties of

the selected basic event. To tell the evaluation algorithm that it shall consider the given

common cause factor between these components, you must use the same generic basic

event (the same name) for all of them, but with different suffixes (e. g. ‘1’, ‘2’ and ‘3’

or ‘FRONT’ and ‘REAR’).

Thus the suffix is used to distinguish multiple basic events referring to the same generic basic

event, that are not identical, but share a common cause factor β > 0.

Since dots ‘.’ are used automatically to delimit the name from the suffix and also to indicate

multiple parts of the suffix in prime implicants (cut-sets), they should not be used in the

name or suffix (even it would be technically possible).

7.3.2 Tree Basic Event – Qualitative Properties

For qualitative fault trees a ‘second text line’ is displayed instead of the numeric values in the

name field of each event. It doesn’t get lost when changing the project type in the project

properties dialog to quantitative evaluation. Since this text is specific to each basic event, it

is a property of the basic event, not the underlying generic basic event. Therefore it is stored

in the fault tree file.

If you want to check the fault tree according to [SiRF]-rules, the ‘second text line’ must begin

with either ‘SAS’ or ‘SL’, followed by one optional space, followed by a number 0 to 4. After

that arbitrary text is allowed. Also see section 7.7 and the example provided with Functional

Safety Suite.
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7.3.3 Tree Basic Event – Background Color

The background color can be selected separately for each event.

7.3.4 Generic Basic Event – General Properties

7.3.4.1 Description

A user defined description of the generic basic event and therefore identical for all basic events

referring to this generic basic event.

7.3.4.2 House event, Condition event, Not developed

See section 4.2.1.

7.3.5 Generic Basic Event – Model

The probabilistic model of the generic basic event. See section 4.3 for details.

7.3.6 Generic Basic Event – Values

The values needed by the model of the generic basic event. See section 4.3 for details.

7.4 The Gate Event Properties Panel

The following types of gates are supported:

• And

• Priority-And (includes the ‘Sequential’ gate)

• Inhibit (with two or three inputs)

• Or

• Not

• Combination

• Reduced Combination

• Transfer-In

Events connected to a gate are called ‘inputs’. The gate an event serves as input is called

‘parent’. The topmost event of a fault tree is called top event, in case of the highest level

fault tree also ‘top hazard’.

For evaluations, And, Priority-And, Or and Combination gates must have at least one input.

If only one input is connected to a gate of one of these types, the gate has no effect; in case

of an And or and Or gate, the symbol is not displayed, therefore.

Inhibit gates have either two or three inputs.

Not gates have exactly one input.
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Reduced combination gates have exactly one graphically displayed input, that is internally

duplicated up to 170 times.

Each input can be a basic event or another gate. The only exception is the Not gate: Since

the Not-operation cannot be applied to rates or densities, but only to probabilities, a Not

gate cannot deliver an occurrence rate to a higher gate. Therefore it only makes sense in the

condition branch of an Inhibit gate.

The Transfer-In gate in fact has one input, but this is not drawn, but instead stated as verbal

reference to a gate in another fault tree. The referred fault tree must either be a member of

the same package or of the global package.

All properties of the gate are stored in the fault tree file (extension .ftl).

Figure 34: The gate event properties panel

7.4.1 General Properties

Name:

A user defined identifier of the gate. Every gate should have another identifier although this

is not required by Functional Safety Suite.

Description:

A user defined description of the gate. The description of Transfer-In gates is copied from

the referred event, whenever you change the fields for the referred tree name or the referred

event name.
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7.4.2 Gate Type

7.4.2.1 AND

The And gate has at least one input event. Each input can be a basic event of any kind or a

gate.

Common cause contributions are considered when calculating a gate, see section 7.6.1.

7.4.2.2 PRIORITY-AND

In order to be true, a Priority-And gate requires all inputs to become true in a certain

sequence, starting with the leftmost input to the rightmost.

Evaluation of this kind of gate requires translation to a Markov model. This is done auto-

matically during evaluation, however you should be aware of this for two reasons:

1. Conversion and evaluation of the underlying Markov model might need quite some time.

2. The internally created Markov model is linked to the fault tree just as if the Markov

model would have been created manually. Therefore the structure below the Priority-

And gate will become invisible to the fault tree, and thus no identical events or common

causes can be considered between the branch topped by the Priority-And gate and the

rest of the fault tree.

7.4.2.3 INHIBIT

The Inhibit gate has either two or three input events. In case of two inputs, the first is the

event input, the second is the condition input. In case of three inputs, the first is the event

input if the condition is true, the second is the event input if the condition is false, and the

third is the condition input. In any case, the condition input is displayed beside the gate on

the right.

In case of two inputs, the gate’s occurrence rate and unavailability are those of the event

below the gate times the probability Q of the event connected to the condition input. Thus

the Inhibit gate with two inputs is similar to an AND gate, except of that the occurrence

rate of the second input is ignored. Since the first input often describes a standard situation

but not a failure, it is often a basic event marked as House Event.

In case of three inputs, the gate’s occurrence rate and unavailability are those of the first

event below the gate times the probability Q of the event connected to the condition input,

plus those of the second event below the gate times the negated probability 1 − Q of the

event connected to the condition input. Thus the Inhibit gate with three inputs is kind of an

If-Then-Else gate. It is in particular useful to model diagnostics: The first event describes the

situation with defect diagnostics (e. g. long detection time, some additional dangerous failure

modes), the second event the situation with working diagnostics (e. g. short detection time,

no failure modes that aren’t dangerous if detected). Note that due to the intended purpose

of the gate, the two event inputs of the three input inhibit gate are mutually exclusive per
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definition, i. e. the combination of the two event inputs is not included in the list of prime

implicants.

Note that the use of the three input Inhibit gate will form a non-coherent fault tree, including

all the negative characteristics of non-coherent fault trees. Also see the examples containing

Inhibit gates.

Since the condition is quantified by a probability only (no occurrence rate), the basic events

of the branch connected to the condition input must be marked with the modifier Condition

Event, see section 4.2.1.1.

When converting a fault tree to a Markov model, an Inhibit Gate will lead to instantaneous

transitions.

There are two special cases related to the condition input of a two-input Inhibit gate:

1. If a generic basic event of type immediate is connected to the condition input and

the parameter probability is set to zero, the branch topped by the INHIBIT gate is

completely ignored.

2. If a generic basic event of type immediate is connected to the condition input and the

parameter probability is set to one, the condition event is ignored.

These rules might be useful in order to adapt the structure of a (generic) fault tree to different

specific applications, i. e. to simplify the re-use of a fault tree for different projects. You can

check the effect if you export the final fault tree by Export – Final Fault Tree.

7.4.2.4 NOT

The Not gate has exactly one input event.

A Not gate only makes sense within the condition branch of an Inhibit gate, or if only

the unavailability Q or the unreliability F (T ) is calculated, since a frequency and thus an

occurrence rate cannot be inverted. In fact, if you want to calculate the occurrence rate h

(PFH), a Not gate outside a condition branch is a modeling error, and the model cannot be

evaluated.

7.4.2.5 OR

The Or gate has at least one input event. Each input can be a basic event of any kind or a

gate.

7.4.2.6 COMBINATION

The Combination gate has at least one input event. Each input can be a basic event of any

kind or a gate.

The output of a Combination gate is true (faulty), if at least M of the inputs are true (faulty).
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In fact the Combination gate is just an abbreviation of or-ed And gates according to M and

the number of inputs. Therefore calculation is done as with standard Or and And gates. You

can check that by calculating and exporting the prime implicants or by exporting the resulting

fault tree by Export – Final Fault Tree. Identical events or common cause factors between

basic events contained in the branches below the Combination gate will be considered as if it

would be one single fault tree.

Starting with version 4.0 of Functional Safety Suite, the number of inputs not limited anymore.

7.4.2.7 REDUCED COMBINATION

The Reduced Combination gate has exactly one input. The input can be a basic event of any

kind or a gate. Logically the one graphically displayed input is handled as if n independent

inputs of this kind would be connected to the gate.

The output of a Reduced Combination gate is true (faulty), if at least m of the n (virtual)

inputs are true (faulty).

In contrary to all other gates, Reduced Combination gates numerically evaluate the input

event (they calculate qi and hi or Fi of the connected input). Unavailability qg and occurrence

rate hg or unreliability or Fg of the gate are then calculated as function of n, m, qi and hi or

Fi and stored in a new temporary generic basic event, referred by a new temporary (internal)

basic event of type Link. The formulas used to calculate higher gates only consider this basic

event and thus do not get information of the structure below the Reduced Combination gate.

The suffix of the temporary (internal) basic event can be set to ‘#’ in order to create multiple

instances of the element described by the Reduced Combination gate in higher level fault

trees. This is achieved by adding an ‘#’ at the end of the name of the Reduced Combination

gate, also see section 7.6.1.

7.4.2.8 TRANSFER-IN

A Transfer-In gate is a reference to another event defined by the name of the referred fault

tree (which must be member of the same local package or the global package) and the name

of an event in the referred fault tree. The referred event can be any basic event or gate in the

tree, not only the top event. The referred fault tree cannot be the tree the Transfer-In gate

belongs to. Regarding calculations, sub-trees referred by Transfer-In gates are treated as if

they would be stated directly in the higher level tree. Therefore you can split trees wherever

you want. Please note the possibilities for handling of basic event names and common cause

factors as described in section 7.6.1.

Note: Circular references are forbidden for obvious reasons. They are detected in the evalu-

ation, the evaluation will be aborted and the error indicated in the status bar.

You can open the referred fault tree by double-clicking the gate.
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7.4.3 Qualitative Properties

For qualitative fault trees a ‘second text line’ is displayed instead of the numeric values in the

name field. It is stored in parallel to the numeric values and therefore doesn’t get lost when

changing the evaluation mode in the project properties dialog (tab Fault Trees & RBDs) and

vice versa.

If you want to check the fault tree according to [SiRF]-rules, the ‘second text line’ must begin

with either ‘SAS’ or ‘SL’, followed by one optional space, followed by a number 0 to 4. After

that arbitrary text is allowed. Also see the example in the doc-directory.

7.4.4 Background Color

The background color can be selected separately for each gate.

7.5 Quantitative evaluation of fault trees

The value of interest for each safety function is either

1. the mean unavailability on demand Q (PFD),

2. the mean occurrence rate h (PFH),

3. or the probability of failure F (T ) after system lifetime (or mission time) T .

The value of interest and several parameters related to quantitative evaluation of fault trees

are set in the fault tree evaluation properties dialog, see below.

To evaluate a fault tree, select Calculate – Calculate Model Values. First the final tree

is determined, this is the fault tree in which all Combination gates and Transfer-In gates have

been replaced by the adequate branch, and all Reduced-Combination gates and Priority-And

gates have been replaced by a link to another model. Also Inhibit gates might have been

eliminated, see section 7.4.2.3. Circular references are detected and indicated in the message

window before the evaluation starts. The final tree can be exported to a new fault tree by

Export – Final Fault Tree, e. g. in order to check if all modules referred by Transfer-In

gates have been considered as intended, see section 11.7.9.

After that, prime implicants and/or Binary Decision Diagrams (BDDs) describing the un-

availability Q, the unreliability F and/or the occurrence rates h or densities w are created.

Then all lower level models connected by links and all generic basic events are evaluated, so

that finally the prime implicants and/or BDDs can be quantified. Depending on your choice

in the fault tree evaluation properties dialog, either only the top event is calculated or all

gates.

Results of the evaluation are displayed at two places. The values of the top event are displayed

in the header of the fault tree. In addition the values of interest are displayed in each event’s

symbol, see section 7.5.1.1.
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7.5.1 Evaluation Parameters – General Evaluation Parameters

Note: If the fault tree is referred in another fault tree by a Transfer-in gate, these parameters

are irrelevant, since this fault tree will just be a branch of the higher fault tree during

evaluation.

Figure 35: The fault tree’s general evaluation parameters panel

7.5.1.1 Calculation Value

Select which value(s) to calculate:

• If calculate mean unavailability Q is selected, only Q is calculated. In case of a

transient evaluation, Q(t) is available for display in a chart frame.

• If calculate mean occurrence rate h and unavailability Q is selected, in addition

to h and Q the estimated number of occurrences of the top event N(T ) is calculated

based on h or h(t), see below. In case of a transient evaluation, also the unconditional

failure density f(t), the semi-conditional failure rate w(t) and the unreliability F (t) are

calculated and available for display in a chart frame, in addition to h(t), Q(t), N(t).
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• If calculate unreliability F(Lifetime) is selected, at least F (T ) is calculated. If the

unreliability is calculated directly, i. e. based on the unreliabilities of the basic events

(see section 7.5.2.3), in case of the transient evaluation, also the unconditional failure

density f(t) is calculated and thus can be displayed in a chart frame in addition to F (t).

If the unreliability is calculated via occurrence rate, the same algorithms are used as if

calculate mean occurrence rate h and unavailability Q would be selected, but

instead of Q and h the unreliability F (T ) is displayed in the graphics. Consequently, in

case of a transient evaluation h(t), f(t), w(t), F (t), Q(t) and N(t) are available in the

chart frame.

In steady-state evaluation, the mean occurrence number N(T ) is calculated by

N(T ) = h · T (34)

with T being the system lifetime or mission time. If the unreliability F (T ) is calculated via

occurrence rate (h), it is calculated by

F (T ) = 1− e−h·T (35)

In transient evaluation, the occurrence number N(t) is calculated by

N(t) =

t∫
0

h(τ) dτ (36)

If the unreliability is calculated via occurrence rate, it is calculated by

F (t) = 1− e
−

t∫
0

h(τ) dτ
(37)

The mean values for occurrence rate h and unavailability Q are calculated by

h =

T∫
0

h(t) dt

T
(38)

and

Q =

T∫
0

Q(t) dt

T
(39)

For small values of N (N � 1, as fulfilled typically for higher level events), F ≈ N is valid.

For lower level events h often does not have the meaning of a failure rate, but determines

usually occurring events, so that often N � 1 applies for a longer system lifetime, and F ≈ 1

accordingly.

7.5.1.2 Evaluation Mode

Select whether the fault tree shall be evaluated in steady-state mode or in transient (time-

variant) mode. In case of transient evaluation, the time interval must be set as well.
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Quantitative steady-state evaluation

A steady-state analysis is appropriate for all systems that are supposed to operate for many

years, with certain test intervals and optionally some down-times for maintenance and repairs.

Several parts of the system might be replaced or repaired during the system’s lifetime. In case

that all failures are detected in adequate time (either by continuous diagnosis, by periodic

tests or by malfunction of the system), both the failure rate h (PFH) and the unavailability

Q (PFD) of the system don’t depend on its actual age, but will reach some pseudo-stationary

state where both values will oscillate around a mean value. The frequency of this oscillation

is equal to the longest detection interval or a multiple of it. This is even correct in case the

failure rates of some particular components depend on their specific age, if the lifetimes of

these components are shorter than the system life time. The value of interest for each safety

function performed by such a system is either the mean unavailability on demand Q (PFD),

or the mean occurrence rate h (PFH). The related standard is mainly [EN 61508] and the

derived standards. Examples for those systems are machines, cars, trains, air-crafts, chemical

plants, power plants, etc. and their control systems.

A steady-state analysis is very fast, because all values have to be calculated only once (com-

pared to time-variant analysis, where all values have to be calculated many times, see below).

Unfortunately, there is one major issue related to steady-state calculation of unavailabilities:

The mean value of the product of two (or more) time-variant values is in general not equal

to the product of the mean values:

Q1(t) ·Q2(t) 6= Q1(t) ·Q2(t)

In most applications, using mean values of the components unavailabilities is too optimistic.

Of course you can use maximum values of the components (basic events) unavailabilities, i. e.

the unavailability just before the next test, but this is quite pessimistic. Functional Safety

Suite provides three options on how to deal with this issue in steady-state evaluations, see

section 7.5.2.1. The only way how to calculate the exact values is using a transient evaluation,

but this needs much more computing time, unfortunately.

Quantitative transient evaluation

A transient (or time-variant) analysis typically produces more precise results for

• fault trees or Markov models containing basic events with time-variant parameters, e. g.

basic events of type non-repairable,

• fault trees or Markov models including basic events of type cyclic.

• fault trees resulting in minimal cut-sets that are longer than 2 events.

Also if the ‘mission failure probability’, namely the system’s unreliability F (0, Tmission) is the

value of interest, a transient evaluation usually makes sense, even though many systems of

this kind can also be modeled by steady-state fault trees or Markov models, using generic

basic events of type non-repairable, see section 4.3.2.
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Time interval: The step size for transient evaluation in hours. A smaller step size means

more steps for the given system lifetime and thus takes more time in calculation. This might

be an issue in case of large systems. The step size must be less than a 10th of the smallest

periodic (cyclic) event you want to evaluate for discrete times. Time constants less than 10

times the step size are handled as rates. However step size should be even smaller in order

to reduce the computational errors.

If a value of a generic basic event, the suffix of a basic event or the structure or evaluation

parameters of the fault tree is changed, all values that might be affected by this change are

automatically marked invalid and not displayed anymore, so that no inconsistent values are

displayed.

7.5.1.3 Gate Calculation Mode

Usually you should calculate all gates, because the intermediate gate values typically help

understanding the fault tree and the critical paths. However, in order to save calculation

time, you might want to calculate the top event only.

Calculate top event only: Only the top event of the fault tree is calculated, but no lower

gates. This option just saves evaluation time, the top results will be the same.

Calculate all gates: All gates of the active fault tree are calculated. Select this option if

you want to analyze where the top event’s results come from.

7.5.2 Evaluation Parameters – Algorithm Parameters

Note: If the fault tree is referred in another fault tree by a transfer gate, these parameters are

irrelevant, since this fault tree will just be a branch of the higher fault tree during evaluation.

7.5.2.1 Steady-State Evaluation Unavailability Mode

The unavailability function Q(t) of a repairable component is a periodic function: It becomes

Q(t) = 0 after each (complete) test at time tn = n · tcheck + t0 and increases until the next

test at time tn+1 = (n+ 1) · tcheck + t0.

The following examples show the unavailability as function of time for a system of two re-

pairable (and therefore periodically tested) components. The first example considers non-

redundant components (connected by an OR gate), the second considers redundant compo-

nents (connected by an AND gate).

Example 1:

A safety system consists of two components (both needed, not redundant) with two failure

events E1 and E2.

E1 has a failure rate of λ1 = 10−4/h and is tested every 150 h.
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Figure 36: The fault tree’s algorithm parameters panel

E2 has a failure rate of λ2 = 10−3/h and is tested every 30 h.

Figure 37 shows the unavailability function Q(t) if at t0 = 0 both components are tested. Due

to the given test intervals, also at t = n ·150 h both components will be tested in parallel. The

dotted lines are the single event unavailabilities, the solid line shows the overall unavailability,

which is approximately the sum of both single event unavailabilities.

Figure 38 shows the unavailability function Q(t) if the test for E1 is executed at t1 = t0,

whereas the test for E2 is executed at t2 = t0 + 15 h. Since there is no complete test, the

overall unavailability never evaluates to 0 (at least not for t > 0).

Note that the mean value is the same, independent of the relation of the test times.

The lifetime is usually much longer than a period of Q(t), because the component is tested

or maintained several times during the lifetime.

Another special case is that the component/function is used only for one mission, e. g. it is

created/tested before or at the start of the mission and becomes invalid after the end of the
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Figure 37: The unavailability functions of two components, first test at the same time

Figure 38: The unavailability functions of two components, staggered tests

mission. In that case the interval is identical to the mission time.

Example 2:

A safety system consists of two redundant subsystems S1 and S2. S1 has a failure rate of

λ1 = 10−4/h and is tested every 150 h. S2 has a failure rate of λ2 = 10−3/h and is tested

every 50 h. With these values the mean unavailability of S1 is Q1 = 7.45 · 10−3, of S2 it is

Q2 = 2.45 · 10−2. Multiplication of both values gives 1.83 · 10−4.

Figure 39 shows the unavailability function Q(t) if at t = 0 h both subsystems are tested. The

mean unavailability is Q = 2.03 · 10−4 but not 1.83 · 10−4! Simple multiplication of the values

is obviously not correct and not even conservative.

Figure 40 shows the unavailability function Q(t) if the test for S1 is executed at t1 = 0 h,

whereas the test for S2 is executed at t2 = 15 h. With this shift the mean unavailability is

Q = 1.77 · 10−4, with a shift of t2 = 25 h it would be Q = 1.72 · 10−4.

As shown in example 2, when performing the conjunction of events (using an AND-gate) the

mean overall unavailability is not given by the product of the mean unavailabilities of each

event. For synchronized tests without shift, the mean unreliability of the system is always
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Figure 39: The unavailability functions of redundant systems, parallel tests

Figure 40: The unavailability functions of redundant systems, staggered tests

higher than the product of the mean unavailabilities of its events. Also refer to [EN 61508-6],

section B.2.2.

Optimistic

In ‘optimistic’ mode, the mean unavailabilities of generic basic events are used, as calculated

according to section 4. As explained here before, this is usually optimistic.

Corrected

In ‘corrected’ mode, also mean unavailabilities of generic basic events are used, but combina-

tions of unavailabilities are multiplied by a factor greater than 1 (depending on the length of

the cut-set), so that the result is for sure not too optimistic (however it might be pessimistic).

Unfortunately this correction cannot be performed on BDDs directly, and thus if unavailabil-

ity is calculated by BDDs (see section 7.5.2.2) the BDDs need to be converted to a sum of

products of events, what requires quite some calculation effort for large fault trees.
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Safe

In ‘safe’ mode, the maximum unavailabilities of generic basic events are used, as calculated

according to section 4. Obviously this is pessimistic for most basic event types, and the longer

the cut-sets, the more pessimistic is the result.

Hint: If a fault tree contains components modeled by basic events of type repairable, standby

or link, that are tested at the same time and only rarely (e. g. in a preventive maintenance

once per month or year), so that their unavailabilities are not obviously negligible, you should

perform a transient evaluation instead of a steady-state evaluation to get precise results. If a

fault tree contains non-repairable events, you should always go for transient evaluation.

7.5.2.2 Unavailability Algorithm

Calculation by BDDs

Calculations based on BDDs are both accurate and very fast even for huge fault trees. The

only reason not to select this option is in steady-state evaluation with unavailability mode

‘corrected’ (see section 7.5.2.1) for big fault trees.

Calculation by PIs

Calculations based on PIs are more or less pessimistic due to missing disjointedness between

cut-sets (or prime implicants). The only reason to select this option is in steady-state evalu-

ation with unavailability mode ‘corrected’ (see section 7.5.2.1) for big fault trees.

7.5.2.3 Unreliability Algorithm

Up to version 4 of Functional Safety Suite, the unreliability has been calculated based on

the occurrence rate h or h(t). This method is suitable for all kinds of systems, but a little

conservative and quite slow. Version 5 provides an algorithm to calculate the unreliability

directly. This is quite simple and fast, and in fact this is how all “traditional” fault tree tools

calculate unreliability, and what is explained in all books including [EN 61025]. Unfortunately,

this is wrong in case the fault tree contains conditions, as demonstrated in the following

example.

Example 3:

A top event ‘TE’ occurs, whenever a periodic event ‘H’ appears and a condition ‘Cond’ is ful-

filled when ‘H’ appears. This is modeled in the fault trees shown in figure 41. Event H appears

every 1000 hours with a probability of 0.1. Thus, given a system lifetime of 200 000 hours, it

will appear about 20 times (of course this is no fix value, but the expected value). In the left

fault tree, the top event’s unreliability is calculated “directly”, i. e. by Fsys = FH ·QCond = 0.1.

Even though both FH and QCond are probabilities, they must not be multiplied, because they

are different quantities. The correct result has to be calculated based on the occurrence rate

by Fsys = 1− exp(−hsys · T ) with hsys = hH ·QCond = 1E−5/h, as shown on the right.
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Figure 41: Unreliability for a system with conditions – left: directly calculated (wrong), right:

via occurrence rate (correct)

Thus if the fault tree doesn’t contain conditions, select Direct, if it contains conditions select

Via Occurrence Rate.

In case of direct calculation of the unreliability, you can select whether it shall be calculated

By BDDs or By Prime Implicants (minimal cut-sets). In fact there is no reason for using

prime implicants – it is much slower than via BDDs and the result is pessimistic (by BDDs

the result is exact).

7.5.2.4 Occurrence Rate Algorithm

If the minimal cut-sets (or prime implicants, PIs) of a fault tree are known, the occurrence

rate of the top event hsys can be estimated based on the occurrence rates and unavailabilities

of the basic events by

hsys ≈
nPI∑
i=1

nLit,PIi∑
j=1

hj · nLit,PIi∏
k=1,k 6=j

qi,k

 (40)

The PIs are determined by an algorithm using modified BDDs (in fact ternary decision di-

agrams, TDDs), which is very fast. The evaluation of the PIs doesn’t need much memory,

but some computing time. In case of high unavailabilities (Q > 0.5) this estimation can be

too conservative. However, since such high unavailabilities shouldn’t occur in a safety related

system, the estimation is sufficiently precise for most problems.

In case of high unavailabilities, a more precise estimation can be calculated based on the
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(unconditional) occurrence density wsys and the unavailability Qsys:

wsys =

nPI∑
i=1

nLit,PIi∑
j=1

wj · nLit,PIi∏
k=1,k 6=j

qi,k

 · nPIj∏
j=1,j 6=i

1−
nLit,PIj∏
k=1

qj,k

 (41)

hsys =
wsys

1−Qsys
(42)

This algorithm obviously needs some more calculations and is therefore slower.

Both algorithms are conservative estimations also due to the fact, that the prime implicants

are not disjointed. The exact calculation requires disjointed prime implicants, which need to

be determined by converting the PIs to BDDs again, one BDD per literal. This is a resource

intense operation and thus is only possible for small to medium size fault trees. But once the

BDDs have been created (if they can be created with given memory resources), numerical

evaluation will be very fast.

In addition to these algorithms, an algorithm not using PIs at all is implemented, i. e. the

occurrence rate is directly calculated by BDDs. This is the fasted algorithm. Unfortu-

nately there is no formal proof of the correctness (or at least conservativeness), therefore you

shouldn’t rely on it before having it crosschecked by another algorithm.

All possible combinations of algorithms are available for selection. Algorithms using the

occurrence rates of the basic events are always somewhat faster than their counterparts using

unconditional occurrence frequencies (by a factor of 2 approximately).

occurrence rate by PIs via rate The occurrence rate is calculated based on the oc-

currence rates and unavailabilities of the basic events contained in the PIs. Doesn’t need

much memory, but high computing effort for transient evaluation. Result is conservative, in

particular for high unavailabilities or large fault trees.

occurrence rate by disjointed PIs via rate PIs are sorted for literals and then being

disjointed by BDDs. The occurrence rate is then calculated based on the occurrence rates and

unavailabilities of the basic events. Needs much memory, but only medium computing effort

for transient evaluation. Result is slightly conservative, in particular for high unavailabilities

or large fault trees.

occurrence rate by BDDs via rate The occurrence rate is directly calculated based on

BDDs, using occurrence rates and unavailabilities of the basic events. No PIs are determined.

Needs few memory and only small computing effort for transient evaluation. Result might

not be correct for some trees (deviates from PI based algorithms in both directions).

occurrence rate by PIs via density The occurrence rate is calculated based on the

occurrence densities and unavailabilities of the basic events contained in the PIs. Doesn’t need

much memory, but high computing effort for transient evaluation. Result is conservative, in

particular for large fault trees.
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occurrence rate by disjointed PIs via density PIs are sorted for literals and then being

disjointed by BDDs. The occurrence rate is then calculated based on the occurrence densities

and unavailabilities of the basic events. Needs much memory, but only medium computing

effort for transient evaluation. Gives the correct result.

occurrence rate by BDDs via density The occurrence rate is directly calculated based

on BDDs, using occurrence densities and unavailabilities of the basic events. No PIs are

determined. Needs few memory and only small computing effort for transient evaluation.

7.5.3 Evaluation Parameters – PAND Parameters

Fault trees containing priority-AND gates are called “dynamic fault trees”, since they model

a system, whose structure varies in consequence to some event(s). The branches topped by

the priority-AND gates are automatically converted into Markov models when evaluating the

fault tree in the background. Independent of this, each fault tree or branch of a fault tree can

be converted to a Markov model by Edit – Convert Gate to Markov model on request

by the user.

A complete conversion to a Markov model considers, that the system’s state can in fact “jump”

from one (yet incomplete) chain to another chain, until a final state is reached. Please see

section 9.5.2 for an example. The program can be told to consider this by selecting create

complete chains. The internal conversion can get quite complex even for not very large fault

trees. Therefore by default, only the direct Markov chains are created, which are equivalent

to the minimal cut-sets. The difference is rarely visible, and typically not significant.

7.6 Modularization and Common Causes

7.6.1 Handling of common causes

Two common cause scenarios are to be considered:

1. Multiple events in the fault tree(s) depict the identical event and have therefore the

same name and suffix. If those events are conjuncted via and, priority-and, inhibition

or combination gates, all duplicates are deleted in the minimal cut-set, thus the common

cause factor stated in the basic event properties is meaningless.

2. Multiple events in the fault tree(s) refer to different components in the system and

therefore have the same name X (pointing to the same generic basic event X) but different

suffix. In that case, when calculating the unavailability and occurrence rate of a minimal

cut-set, the common cause factor β stated in the basic event properties is considered.

Therefore the generic basic event X is split into two generic basic events internally: One

containing the single-cause part (1 − β) · Q and (1 − β) · h, the other containing the

common-cause part β ·Q and β ·w. The generic basic event of the common cause part

has the same name X, but a suffix COM, as you can see in the minimal cut-set list (see

section 11.6.3).
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See figure 42 for an example. Given two components X.1 and X.2 of same type X. A common

cause factor β of 1% is assumed between components of this type due to their construction,

manufacturing and environment. For one function ‘A’ at least one of the two components

X.1 and X.2 is needed, in another function ‘B’ component X.1 and another component Y is

needed.

Figure 42: Example for common cause handling by suffixes

As expected, a common cause factor of 0.01 is used between the two components X.1 and

X.2 of the same type X (see the values of ‘FKT A FAILS’) whereas events X.1 are treated

as the identical event: ‘FKT B FAILS’ has no impact to the top event since event X.1 in

‘FKT B FAILS’ will always occur whenever event ‘FKT A FAILS’ occurs (obviously such a

system architecture makes no sense). ‘FKT B FAILS’ is not even calculated, since component

Y doesn’t occur in the cut-sets at all and therefore is not initialized. You can check the cut-sets

by clicking Calculate – Show Minimal Cut-sets.

Note that if a basic event is selected, all basic events referring to the same generic basic event

as the selected one are highlighted in blue color as well (see figure 42). This applies also to

basic events in other models, thus when you switch to another model, you can also directly

see the related basic events.
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7.6.2 Modularization of fault trees

For the same reasons as in other fields of engineering, it usually makes sense to split a complex

system into several ‘modules’ or ‘units’. This is the same for fault trees. In fact one will aim

to reflect the architecture of the system in the fault trees.

See figure 43 for an example of a system, consisting of four modules, characterized as follows:

• The overall system consists or two units of type B, named B1 and B2.

• The overall system fails, when both units B1 and B2 fail.

• Each unit of type B includes two components of the same type X, named X1 and X2

per unit B.

• Each unit of type B includes one component of type Y.

• Each unit of type B uses the same two external units of type A, named A1 and A2.

• A unit of type B fails, when both units A1 and A2 fail, or any of its own components

X1, X2 or Y.

• Each unit of type A can fail due to three faults, FAULT1, FAULT2, FAULT3.

• FAULT3 will always let all units of type A fail.

Units A could be sensors, whereas B1 and B2 could be computers working with the sensor

data.

Figure 43: Block diagram of a complex system

The fault tree of this system is shown in figure 44.

At least if units A and B are even more complex, you’ll feel a need to split this tree into

several sub-trees. In principle Functional Safety Suite provides two possibilities: Transfer-in

gates and links.

7.6.2.1 Modularization by Transfer-in gates

Apart from dividing large fault trees to several pages, gates of type transfer-in are used in

two cases:

1. the same unit is needed for multiple higher level units or (sub-)functions. In that case,

the transfer-in gates referring to the sub-tree shall represent the same unit and thus the



7 FAULT TREES 99

F
ig

u
re

44
:

E
x
am

p
le

fo
r

a
co

m
p

le
x

sy
st

em



7 FAULT TREES 100

identical event.

2. a unit is existing twice or more in the system. In that case, the sub-tree describes one

of these units. The fault tree uses multiple transfer-in gates referring to this sub-tree,

whereas each transfer-in gate shall represent a different unit and thus different events.

The two cases are handled in a simple way in Functional Safety Suite:

• If the names of transfer-in gates are equal, the referred sub-trees are considered to relate

to the same unit (case 1).

• If the names of transfer-in gates differ, the referred sub-trees are considered to relate to

different units (case 2).

However imagine that in case 2, the sub-tree refers to some events, that are not specific to

each unit described by this sub-tree, but shared by all units of this kind (and maybe even

other units). In order to describe also this case correctly, the following rule applies:

Rule 1: If the suffix of a basic event ends with ‘#’, a new basic event will be created internally

when constructing the cut-sets during calculation. The suffix of the new basic event will be

the name of the transfer-in gate plus ‘.’ plus the original suffix (excluding the ‘#’). 7 In

case of multiple levels of transfer-in gates, the names of all transfer-in gates will be stringed

together, separated by ‘.’ and starting with the lowest level.

By this mechanism, the overall example system could now be split as shown in figures 45 and

46.

Figure 45: Example: Separation of units of type A (1)

The suffixes ‘#’ of ‘A Fault1’ and ‘A Fault1’ will be extended to ‘A1’ and ‘A2’. Now you

might also want to model units of type B with one generic fault tree B. If you’d just replace

the gates ‘B1 Fail’ and ‘B2 Fail’ by transfer-in gates, rule 1 would apply again. Thus the

suffixes ‘#’ of ‘A Fault1’ and ‘A Fault1’ would be extended to ‘A1.B1 Fail’, ‘A1.B2 Fail’,

7Prior to version 6.0, the complete original suffix including the ‘#’ has been appended. From version 6.0

on, the ‘#’ is omitted in the final fault tree, because it’s not needed anymore.
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Figure 46: Example: Separation of units of type A (2)

‘A2.B1 Fail’ and ‘A2.B2 Fail’, i. e. you’d model independent units A1 and A2 for each of the

units B1 and B2. But remember, that the same units (sub-tree) A1 and A2 are needed in all

units of type B. So you’ll have to tell in tree B, that you mean identical A’s in all instances

of B.

Therefore the following rule applies:

Rule 2: If the name of the transfer-in gate ends with ‘%’ 8 , or if a transfer extension is

stated, the names of higher level transfer-in gate names will be ignored.

Given this, it is possible to split the top tree as shown in figure 47.

Figure 47: Example: Top tree (left) referring to two generic units of type B (right),

each referring to the same two generic units of type A.

In any case you can check the result by having a look at the list of minimal cut-sets (see

section 11.6.3). It should always be as shown in table 4.

8Note: The name of the transfer-in gate must not be ‘%’ only.
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Table 4: Minimal cut-sets for the example

Cut-set

A_FAULT1.COM

A_FAULT2.COM

A_FAULT3

B_CompX.COM

B_CompY.COM

B_CompX.B1.X1 * B_CompX.B2.X1

B_CompX.B1.X2 * B_CompX.B2.X1

B_CompX.B2.X1 * B_CompY.B1

B_CompX.B1.X1 * B_CompX.B2.X2

B_CompX.B1.X2 * B_CompX.B2.X2

B_CompX.B2.X2 * B_CompY.B1

B_CompX.B1.X1 * B_CompY.B2

B_CompX.B1.X2 * B_CompY.B2

B_CompY.B1 * B_CompY.B2

A_FAULT1.A1 * A_FAULT1.A2

A_FAULT1.A2 * A_FAULT2.A1

A_FAULT1.A1 * A_FAULT2.A2

A_FAULT2.A1 * A_FAULT2.A2

7.6.2.2 Modularization by Links

The linking mechanism (see sections 2.4 and 4.3.6) provides another possibility to split fault

trees. In the given example, it can be used as shown in figure 48. The difference to using a

transfer-in gate is, that the link hides all internal details of ‘IN’ from fault trees using this

link.

Figure 48: Example: Separation of units A by the use of a link
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7.6.3 Reduced Combination gates and deleting common cause contributions

In contrary to all other gates, reduced combination gates numerically evaluate the list of

minimal cut-sets of the input event (they calculate qi and hi of the input). Unavailability

qg and occurrence rate hg of the gate are then calculated as function of n, m, qi and hi and

stored in a new temporary generic basic event, referred by a new temporary basic event.

Minimal cut-sets of higher level events only contain this basic event and thus do not contain

lower level information including any common cause factor.

Since they reduce information, they are called ‘Reduced’ Combination gates. This reduction

has three reasons:

1. Implicit conversion to and and or gates as done in standard combination gates is not

feasible anymore for very large number of inputs (n).

2. The calculation of Q and h based on minimal cut-sets is not accurate if the same events

occur in many cut-sets. The calculation error is typically� 1% and therefore negligible,

but when the same events occur in hundreds or thousands of cut-sets, it is not negligible

anymore. Correct calculation by disjointing the cut-sets on the other hand is by far too

expensive especially for those cut-sets, where it would be necessary.

3. For many problems, a common cause between similar components is not assumed any-

more on a certain higher level (e. g. common causes have to be considered for compo-

nents of the same type in one box, but several boxes of this type don’t share all those

common causes anymore since they are located far away from each other). Therefore a

mechanism is needed to cut these low-level common causes in higher levels — which is

provided by this kind of gate.

The suffix of the temporary (internal) basic event can be set to ‘#’, in order to create multiple

instances of the element described by the reduced combination gate in higher level trees. This

is achieved by adding an ‘#’ at the end of the name of the reduced combination gate.

7.7 Specifics of qualitative fault trees

The decision, whether fault trees are qualitative or quantitative is defined in the project

properties dialog. No data gets lost if the type is changed between qualitative and quantitative

(steady-state or transient). Thus it is possible to use the same project and the same fault

tree for qualitative and quantitative evaluation.

Events of qualitative fault trees are sometimes classified in some way. For example a ‘safety

level’ (SL) is assigned to each of them. Therefore qualitative fault trees provide a second text

line, displayed in the name field below the name, intended to be used to indicate some “safety

level” or another qualitative specifier. The content of the second text line can be entered

separately for each event and belongs to this event, not to the generic basic event (as the

quantity related values do). This is intended due to the fact, that the “safety levels” of events

of qualitative fault trees are often determined top-down and therefore different safety levels
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might be assigned to the same event in different trees — or even within different branches of

the same tree.

The second text line is stored together with the gate or basic event in the fault tree file

(.ftl).

Figure 49: A qualitative fault tree

Since there is no mathematical rule how to “calculate” the SL of a gate based on the SL’s

of the input gates or basic events, this task has to be performed manually. Therefore when

evaluation type ‘qualitative’ is selected, the second line can be filled with an arbitrary text

— as for example the assigned SL.

Nevertheless there might be rules of how to assign or apportion classes or SL’s. One example

are the rules defined for the authorization of railway vehicles in Germany ([SiRF]). Functional

Safety Suite includes an algorithm to check qualitative fault trees according to the [SiRF]

rules.

7.8 Editing of fault trees

Create a fault tree by File – New Model. Select a name and package for the new tree that

will be created. Finally a simple fault tree, only consisting of the top gate, is created.

Select the top gate by clicking on it. Add a gate below by Edit – Add Gate.

Add a basic event based on a new generic basic event below the selected gate by Library

– New Generic Basic Event. After entering a name, a new generic basic event will be
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created, and a basic event referring to this generic basic event will be added below the selected

gate. Note that the new generic basic event is created in the local package of the fault tree

by default, but you can also choose to create it the global package.

Add a basic event referring to an existing generic basic event below the selected gate by Edit

– Add Tree Basic Event. The new basic event will refer to the latest generic basic event

by default. You can select any other existing generic basic event by selecting it via its name

and package in the Tree Basic Event Properties Panel, see section 7.3.

The sequence of events below a gate can be changed by ‘Shift-→’ and ‘Shift-←’.

A gate or a basic event can be deleted with the ‘Delete’ key. In case of a gate, the inputs of

the deleted gate will be added to the parent gate.

A branch can be deleted by ‘Shift+Delete’.

If you want to assign a new (not yet existing) generic basic event to an existing basic event,

select Library – New Generic Basic Event. The name of the basic event will change to

the name of the new generic basic event, showing that it now refers to the new generic basic

event.

You can copy or cut branches by selecting the top gate of the branch and pressing ‘Ctrl+C’

or ‘Ctrl-X’. The branch saved like this can be pasted below any gate of the same or another

fault tree by ‘Ctrl+V’. Neither the names of the gates nor the suffixes of the basic events of

the pasted branch will be changed automatically, so it’s up to you to change them according

to their new meaning and relation to other events.

Changing properties of gates or basic events is done in the properties window. The only

exception is the change of the name of a basic event (⇔generic basic event), for which a

special command Library – Rename Generic Basic Event is foreseen. The properties of

the generic basic event referred by a basic event can be edited in the library view as well, see

section 4.1.

A fault tree that has not been saved after the latest modification is marked with an asterisk

‘*’ in its title.
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8 Reliability block diagrams

A reliability block diagram (RBD) is a diagrammatic method for showing how component

reliability contributes to the success or failure of a complex system. A RBD is drawn as a series

of blocks connected in parallel or series configuration. Each block represents a component of

the system with a failure rate. Parallel paths are redundant, meaning that all of the parallel

paths must fail for the parallel network to fail. (Compare [Wikipedia])

Mathematically, a (standard) reliability block diagram is just a negated fault tree, only con-

sisting of AND and OR gates: Parallel paths in a RBD represent redundancies, i. e. they

are equivalent to conjunctions (AND-gates) in a fault tree, whereas serial connections are

represented by OR-gates.

Consequently in Functional Safety Suite a reliability block diagram is internally represented

by fault tree data, and evaluated according to fault tree rules. Thus all characteristics and

options described in section 7 apply for reliability block diagrams as well, except of a few

deviations explained hereafter.

8.1 Conjunctions Properties Panel

Figure 50: Changing the type of a conjunction in a reliability block diagram

Since in Functional Safety Suite a reliability block diagram is internally represented by a

fault tree, even the additional conjunction types Inhibit (only the 2-input variant), PAND

and Combination can be used in an reliability block diagram. These types of conjunctions

are indicated by INH, PRIO or the number of paths that must fail on top of the vertical line
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on the right side of the block(s) that are children of this gate, see figure 50.

NOT-gates, Reduced Combination gates and 3-input Inhibit gates are not allowed in relia-

bility block diagrams, but this is only because graphical representation would be very incon-

venient for most readers and therefore potentially misleading. If you need those conjunction

types, you should use a fault tree instead.

Unfortunately providing different types of conjunctions goes along with a graphical problem

in RBDs, see section 8.4.

8.2 Transfer-In gates

Also Transfer-In gates can be used in reliability block diagrams. However since gates are only

indicated as lines in reliability block diagrams, Transfer-In gates have to be shown as blocks,

i. e. similar to basic events. Therefore in order to create a Transfer-In gate, first add a new

block, then convert the block to a Transfer-In gate by Edit – Convert to Transfer-In.

The properties panel will change so that you can select the referred model, see figure 51. The

reference of the Transfer-In gate can either be another reliability block diagram or another

fault tree.

Figure 51: Representation and properties of a Transfer-In gate

Note that in contrary to fault trees, the reference will always be the top event of the referred

reliability block diagram or fault tree.

8.3 Editing of reliability block diagrams

Create a reliability block diagram by File – New Model. Select a name and package for the

new reliability block diagram that will be created. Finally a simple reliability block diagram,
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consisting of one block only, is created.

Create a new generic basic event by Library – New Generic Basic Event. Usually you

should create the generic basic event in the local package, which hence is the default location.

Click on the block to select it.

Add a new block referring to the latest generic basic event by Edit – Add Block Serial

or Edit – Add Block Parallel. You can select any other existing generic basic event by

selecting it via its name and package.

Multiple blocks can be selected by drawing up a selection rectangle by pressing the left mouse

button and pulling the mouse, or by clicking on multiple blocks while pressing the left mouse

button.

The sequence of blocks in a series can be changed by ‘Shift+→’ and ‘Shift+←’, the sequence

of parallel blocks can be changed by ‘Shift+↑’ and ‘Shift+↓’. You can select one or multiple

blocks for moving.

A single block or a selection of multiple blocks can be deleted with the ‘Delete’ key.

If you want to assign a new (not yet existing) generic basic event to an existing block, select

Library – New Generic Basic Event. The name of the block will change to the name of

the new generic basic event, showing that it now refers to the new generic basic event.

You can copy or cut selections of one or multiple blocks by pressing ‘Ctrl+C’ or ‘Ctrl+X’. The

selection saved like this can be pasted by Edit – Paste Serial or Edit – Paste Parallel.

’Ctrl+V’ is equivalent to Edit – Paste Serial. Don’t forget to change the suffixes when

coping blocks if necessary.

8.4 NULL blocks

In a standard RBD, it is impossible that two “AND-gates” are directly linked, i. e. that one

is the parent gate of the other, because the two “And-gates” would just be merged to one.

However if we have different types of conjunctions following each other, e. g. an Inhibit and

a normal And, we have to distinguish the “gates” graphically. This is done by introducing

NULL blocks, see figure 52. A NULL block is a generic basic event with no failure rate (h = 0)

and no unavailability (Q = 0).

In figure 52 the Inhibit conjunction is OR’ed with the NULL block just in order to put it

below an AND conjunction. Mathematically the NULL block has no effect of course.

If you need to add a NULL block, you’ll find it in the global library.

When deleting blocks in a serial structure, a NULL block is automatically inserted where

necessary. When converting a fault tree to a reliability block diagram, NULL blocks are

automatically inserted where necessary as well. However even this automatism doesn’t guar-

antee that you will always be able to visually distinguish all different combination gates in
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Figure 52: The NULL block

some structures. Therefore you should be careful using combination gates different from

AND, or prefer using a fault tree instead.

8.5 Pro’s and Con’s of RBDs versus FTAs

Pro’s RBD:

• Block diagrams are obviously a good method to present the structure of a system. This

is why they are used in thousands of variants, in all fields of engineering and even other

sciences.

Con’s RBD:

• A technical system doesn’t consist of “series” and “parallel” structures only, but other

structures (such as enabling/disabling components) are not supported by (standard)

RBD’s.

• The RBD only shows the logical structure (and even this only as long as it is similar

to the physical structure) on global level. There is no way of describing the behavior

or functionality of a group of components in the RBD, because the “gates” are not

explicitly shown and therefore no descriptions can be added to the “gates”.

• When using different types of conjunction gates, it isn’t automatically safeguarded that

you will actually see the different types. Therefore if you want to use conjunction gates

different from AND, you should use a fault tree.

Pro’s FTA:
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• The “top-down” approach allows to analyze even very complex systems, without in-

creasing the risk of introducing errors in the structure. This approach is supported

(or even only enabled) by the explicit presentation of gates, allowing for additional

intermediate descriptions.

• The explicit presentation of gates allows nice graphical representation of additional gate

types.

Con’s FTA:

• More abstract than a block diagram, thus the structure is not immediately visible.
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9 Markov models

9.1 Introduction and overview

Markov models are another commonly used method for hazard analysis and reliability analysis

in general. The values describing the “quality” of a system,

• the mean occurrence rate h (PFH),

• the mean unavailability on demand Q (PFD),

• or the probability of mission failure F (Tmission)

can be calculated for Markov models as well. For more details see section 9.5.

9.1.1 States and Edges

In contrast to fault trees, Markov models are created inductively (bottom-up): Starting with

the up-state (indicating that the system is completely ok), events that can occur in this state

are identified, and the resulting system states respectively. Then for each new identified state,

the possible events and consecutive states are identified — and so on, up to when no further

change of the system’s state is possible (except due to restoration, see below). This final state

is typically a fail state of the system, whereas the preceding states are intermediate states.

In an intermediate state, the system described by the model still performs its function, but

it has detected or hidden faults.

The edge between two states represents a transition from one state of the system (the source

state of the edge) to another state (the target state of the edge). In standard Markov models

this transition takes place due to the occurrence of an event, thus an edge is characterized by

the occurrence rate of this event (compare [EN 61165]).

Fail state for a low demand function means, that the function is unavailable in this state,

namely the probability of this state contributes to the unavailability Q (PFD) of the function.

Fail state for a high demand or continuous demand mode function means, that the transition

rate(s) towards this state contribute to the failure rate h (PFH) of the function.

Fail state for a non-repairable function means, that the probability of being in this state

contributes to the unreliability F (T ).

Note: If you want to calculate the unreliability F (T ), there should be no restorations from

any of the fail states, because in that case it would be a restorable system, but the unreliability

F (T ) is not relevant for restorable systems. If there are restorations anyhow, the unreliability

cannot be calculated based by just summing up the probabilities of the fail states at time

T . Therefore, the unreliability will be calculated based on the failure density fsys(t) instead,

which is derived from the failure rate hsys(t).
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9.1.2 Restoration

If no restoration would take place, after some time the system would be in one of the final

states (fail states), thus the sum of the probabilities of these states would be 1, no events

and thus no transitions could occur anymore. All systems that shall work for a long time

usually need some kind of restoration, based on preventive of corrective maintenance. In

Markov models, restorations are also events, represented by edges, and thus characterized

by transition rates. Even they are usually called restoration rate, mathematically they are

transitions, just as those representing failures or any other event.

If an edge represents the correction of exactly one failure, this restoration edge is exactly anti-

parallel to the related failure edge (the ‘forward’ part), it ‘returns’ to the source state. In fault

trees both failure and restoration are defined in each basic event (if there is a restoration) —

and since Functional Safety Suite aims for best equivalency between fault trees and Markov

models, this principle is used for edges as well. Therefore instead of defining two independent

edges, the restoration is inherent to the edge describing the failure. Thus the same generic

basic events can be used for edges as for basic events of fault trees. The restoration rate µ is

automatically calculated and written below the edge.

Important note: Usually inspections and tests are executed in predefined intervals. Thus

in redundant architectures, all channels are checked and repaired at the same time. Thus

all restorations related to these inspections and tests will take place at the same time, not

independent of each other. For correct modeling, you should separate the restoration from

the failure part of the event, see section 9.3.1.6.

The direction of the restoration is indicated by a small text arrow left of the restoration

parameter text below the edge, see figure 53.

9.1.3 Extensions of Functional Safety Suite related to Markov models

9.1.3.1 Conditions and Instantaneous transitions

Functional Safety Suite provides some extensions to standard Markov models, named instan-

taneous transitions and cyclic transitions, in addition to transition rates.

An instantaneous transition is not a defined by a transition rate, but a transition probability.

That means, the source state is immediately left with the probability represented by the edge

towards the target state. The sum of the probabilities of the instantaneous transitions leaving

a state must be 1. Thus the probability of finding the system in the source state of such edges

is 0, and the state is called virtual state accordingly. Since the probability of a virtual state

is 0, edges of another type (not instantaneous) starting in a virtual state don’t make sense

and are therefore forbidden.

Instantaneous transitions are necessary to model conditions. Conditions are necessary in two

scenarios:

Condition events: In a fault tree, some basic events describe a probability instead of an
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occurrence rate. Those basic events usually serve as condition for a inhibit gate. For

the same reasons as for fault trees, also in Markov models sometimes a condition needs

to be modeled.

Modularization: Condition events are also a basis to make modularization and encapsula-

tion possible: If a higher level Markov model shall reuse results of a lower level model,

the lower level often also describes an unavailability, and thus a probability.

If the edges leaving a state are determined by probabilities (namely Q(t) and A(t) = 1−Q(t)),

the edges represent instantaneous transitions. That means, that this state is immediately left

with the probability represented by each edge towards the next target state. The sum of

the probabilities of the instantaneous transitions must be 1, and there must be no edges of

another type starting in this state. Thus the probability of finding the system in the source

state of such edges is zero, the state is called virtual state accordingly. Virtual states are

displayed with gray text and circle.

9.1.3.2 Cyclic events

An event that periodically appears, can be modeled by a generic basic event of type cyclic.

This leads to an edge describing a cyclic transition. This edge is described by a deterministic

period and a probability, that it actually appears after each period. In contrary to source

states of instantaneous transitions, the source state of a cyclic transition is not “virtual”,

since its probability is not (always) 0. Thus also other transitions are allowed with this state

as source, e. g. continuous transitions, and the sum of the probabilities of cyclic transitions

doesn’t need to be 1.

9.1.4 Summary of features of Markov models in Functional Safety Suite

• Many occurrence/failure models for edges, including links to other fault trees, Markov

models and complex components.

• Same generic basic event can be used for single cause and common cause part of each

failure.

• Instantaneous transitions: Transitions can be determined not only by rates, but also

probabilities.

• Transitions at certain discrete times.

• Allows states with constant probability.

• Internal creation of common-cause chains.

• Internal creation of completed Markov model.

• Two evaluation modes:

– Steady state evaluation

– Transient evaluation
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9.2 The Markov Model Properties

Presentation related properties of the Markov model are edited in the Markov model prop-

erties panel directly, see below. Evaluation related properties are set in the Markov model

evaluation properties dialog, see section 9.5. All properties of the Markov model are stored

in the Markov model file (extension .mdg).

Figure 53: The Markov model properties panel

9.2.1 General Properties

Description:

A user defined description of the Markov model.

9.2.2 Presentation Properties

Note that in case the presentation related features don’t fulfill your needs, you can export all

graphics in SVG format for further processing by vector graphics tools.

Show edges without restoration part:

In order to get a better overview of restorations, you can disable the display of edges without

restoration. Evaluation is not affected.

Show edges without forward part:

In order to get a better overview of forward edges, you can disable the display of edges only

describing a restoration. Evaluation is not affected.
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Show common cause edges:

In order to get a basic view of the forward edges, you can disable the display of common

cause edges. Evaluation is not affected.

9.3 The Edge Properties Panel

An edge models a transition from a source state to a target state and optionally vice verse

(restoration). The target state is the state the edge points to. Each edge of a Markov model

consists of the reference to the generic basic event and several modifiers.

Figure 54: The edge properties panel

The parameters in the ‘Edge’ section belong to the specific edge, which is part of the Markov

model, and thus are stored in the Markov model file (extension .mdg).

The parameters in the ‘Generic Basic Event’ section belong to the generic basic event as

selected by the field ‘GBE name’, and thus are stored in the library.

Remember: Changing parameters in the ‘Generic Basic Event’ section will change the prop-

erties of all other basic events referring to the same generic basic event too.
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9.3.1 Edge Properties

9.3.1.1 Package

Select whether the generic basic event is in the library of the global package or of the local

package.

9.3.1.2 GBE Name

The identifier of the generic basic event, also serving as the name of the edge. You can select

a name (and by this the referred generic basic event) out of a list of the generic basic events

belonging to the selected package.

9.3.1.3 Suffix

A user defined identifier of the specific instance or the event described by the generic basic

event. In contrary to the suffix of basic events of fault trees, the suffix of an edge has no effect

on the evaluation. It is only for easier creation and better readability of the Markov model.

9.3.1.4 Selection of partial rates or probabilities

Whereas in fault trees the common cause factors are considered completely internally during

evaluation, in Markov models a common cause factor results in multiple edges with different

occurrence rate. In order not to require several generic basic events for the same failure —

one for the single failure, one for the common cause part — you can select which part of the

occurrence rate to use in each edge.

Also for conditions the non-negated probability can be split into the single cause probability

and the common cause probability. Of course the negation of a condition is always the

complete (negated) condition probability ¬p = 1− pcomplete = 1− (psingle + pcommon).

9.3.1.5 Negate probability checkbox

For virtual states the sum of probabilities of the leaving edges must be 1. Typically one

leaving edge models the unavailability of an element or sub-system, the second leaving edge

the availability A(t) = 1 − Q(t) of an element. The unavailability is often modeled by an

appropriate generic basic event or a link to another model, and not given immediately. In

that case the edge for the availability shall be set to the same generic basic event, but with

the ‘negate probability’ checkbox set. By this the value A(t) = 1 − Q(t) will be assigned to

it. An edge with negated probability is displayed in dark green color.

9.3.1.6 No forward checkbox

Depending on the maintenance and repair strategy, the detection and repair of a fault modeled

by an edge doesn’t necessarily lead back to the source state of the edge. This is the case e. g.

if a larger unit with multiple potential faults is exchanged if at least one error is detected, or

in case of common cause failures. Also when using instantaneous transitions, the restoration
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path is different from the forward path. In these cases the restoration must be modeled by

a separate edge. However in order not to need a separate generic basic event only for the

restoration, this separate restoration edge can refer to the same generic basic event as the

edge representing the failure(s), as long as all failures are restored at the same time. In that

case set the no forward flag in order to indicate to the program, that only the restoration

part of the generic basic event shall be used for this edge.

However the direction of the edge is still defined by the generic basic event, thus the edge must

point towards the failure’s target state. See figure 55: All states will directly being restored

to the OK state – either after check every 1000 h (restoration part of edges “X” or “Y” or

separate edges “Rest 1000h”) or immediately when the hazard occurs (edge “Rest imm”).

The restoration edges “Rest 1000h” and “Rest imm” are modelled by generic basic events of

type Repairable, just as “X” and “Y”. Since their forward part is not used, the failure rates

don’t matter.

Figure 55: A pure restoration edge

9.3.1.7 No restoration checkbox

This is just the opposite of the No forward flag, see there for explanation.

9.3.1.8 Continuous forward checkbox

This option makes sense for edges of generic basic event type Cyclic only. There must be at

most one cyclic edge leaving any state, because in case of multiple cyclic edges, ambiguousness

could appear during evaluation. If there is more than one cyclic edge leaving a state, select

this checkbox for those edges that shall be treated as normal transitions using their equivalent

constant transition rate, see section 4.3.4.
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9.3.1.9 Continuous restoration checkbox

There must be at most one cyclic restoration leaving any state, because in case of multiple

cyclic restorations, ambiguousness could appear during evaluation. If there is more than one

cyclic restoration of a state, select this checkbox for those restorations that shall be treated

as normal transitions using their equivalent constant restoration rate.

9.3.2 Generic Basic Event – General Properties

9.3.2.1 Description

A user defined description of the generic basic event and therefore identical for all basic events

referring to this generic basic event.

9.3.2.2 House event, Condition event, Not developed

The house event and not developed modifiers have no effect in Markov models. They are for

information only and cannot be changed here.

The effect and usage of the condition event modifier in Markov models is explained in sec-

tions 9.1.3.1 and 9.5. Also see section 4.2.1.

9.3.3 Generic Basic Event – Model

The probabilistic model of the generic basic event. See section 4.3 for details.

9.3.4 Generic Basic Event – Values

The values needed by the model of the generic basic event. See section 4.3 for details.

9.4 The State Properties Panel

A state of a Markov model refers to a state that a system can enter physically, e. g. due to a

failure, a maintenance action, an action of the operator, the mission profile, etc.

A state can be target of multiple edges and source of multiple edges. Two states can be

connected by one edge only (this edge may have a forward part and a restoration part).

All properties of the state are stored in the Markov model file (extension .mdg).

9.4.1 General Properties

Name:

A user defined identifier of the state. Every state must have a different name, since the name

is used to determine the sources and targets of edges.
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Figure 56: The state properties panel

Description:

A user defined description of the state.

9.4.2 Probability Values

9.4.2.1 Start probability p0

States can be assigned a start probability p0 = p(t = 0), except of virtual states. For states

being source or target of edges, the start probability is only used in transient evaluation. The

sum of all start probabilities of the Markov model must be 1.

States with fix probability

States with no edges keep their start probability p0 forever. By this, it is possible to define

states with a fix probability, e. g. to model a constant basic unavailability.

Figure 57: A state with a fixed probability
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9.4.2.2 Contributes to unavailability

Each state can contribute to the unavailability Q(t) of the element modeled by the model.

States contributing to the unavailability are marked with a violet circle. States that also

contribute to the occurrence rate are marked with a red circle, see below.

9.4.2.3 Contributes to occurrence rate and unreliability

Each state can contribute to the occurrence rate h(t) and unreliability F (T ) of the top event

modeled by the Markov model. States contributing to the occurrence rate and unreliability

are marked with a red circle. They also contribute to the unavailability, since an element in

this state cannot perform any function anymore.

9.4.3 Background Color

The background color can be selected separately for each state.

9.5 Evaluation of Markov models

The value of interest for each safety function is either

• the mean unavailability on demand Q (PFD),

• the mean occurrence rate h (PFH),

• or the probability of failure F (T ) after system lifetime (or mission time) T .

The value of interest and several parameters related to quantitative evaluation of Markov

models are set in the Markov model evaluation properties dialog, see below.

To calculate these values for a given Markov model, select Calculate – Calculate Model

Values. The mean unavailability Q and mean occurrence rate h can be calculated by steady-

state or transient evaluation, the unreliability F (T ) can only be determined by transient

evaluation. Some modeling features are only available for transient evaluation, allowing a

more realistic description of some systems. As for fault trees, a transient evaluation is more

precise but takes much more computing time.

If the Markov model refers to other models by edges of type link, these models are evaluated

before. Circular references are recognized and indicated in the message window before the

evaluation starts.

The values of the event modeled by the Markov model are displayed in the upper left corner in

the graphics tab. The probability of each state is displayed in each state’s symbol, depending

on the method of evaluation (steady-state or transient), see below.

If a parameter of a state or an edge is changed, all values that might be affected by this

change are automatically marked as invalid and not displayed anymore.

9.5.1 Evaluation Parameters – General Evaluation Parameters
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Figure 58: The Markov model’s general evaluation parameters panel

9.5.1.1 Calculation Value

Select which value(s) to calculate. In contrary to fault trees, there aren’t different algorithms

for the different values. Therefore, in fact in steady-state evaluation the mean unavailability

Q and the mean occurrence rate h will be calculated independent of your selection (calculation

of the unreliability F (T ) is not possible in steady-state mode). In transient evaluation mode,

h(t), f(t), w(t), F (t), Q(t) and N(t) are calculated and available for display in the chart

frame. Depending on the selected value, Q or Q, h and the estimated number of occurrences

of the top event N(T ) or the unreliability F (T ) is displayed in the header.

The unavailability Q is the sum of the probabilities of all states marked as contributing to

the unavailability:

Qsys =
n∑
i=0

pfinal,Qi
(43)

The occurrence density of a state j wj is the sum of the transition rates of all edges pointing

to it, multiplied by the actual probability of the source state of each edge

wj =
n∑
i=0

hini · psourcei (44)

If the edge represents an instantaneous transition, the transition rate of this edge is the sum

of the transition rates to the source state of this edge, (i. e. the virtual state) multiplied by

the probability of the instantaneous transition.

The occurrence density of the event modeled by the Markov model wsys is the sum of the

occurrence densities of all states marked as contributing to the occurrence rate of the model
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(see section 9.4.2):

wsys =
n∑
j=0

wj (45)

Note: Typically there will be no restorations leading to a state contributing to the occurrence

rate of the model, but if there were any, they would not be considered in calculation of wsys,

since a restoration obviously doesn’t contribute to the occurrence of an undesired state of the

system.

For calculus of hsys (PFH) it is presumed, that the system is always in an up-state when the

(last, dangerous) failure occurs. The higher the probability of the final state(s) (indicating the

unavailability of the function), the lower the occurrence density of the event modeled by the

Markov model. Therefore, if divide density by availability is selected in the project properties

dialog(tab Markov Models), the occurrence rate (usually a failure rate) of the Markov model

is calculated by

hsys =
wsys

Asys
=

wsys

1−Qsys
(46)

If divide density by start state probability is selected in the project properties dialog the

occurrence rate is calculated by

hsys =
wsys

pOK
(47)

which is more conservative.

Note that the failure rate h can be calculated only for Q 6' 1, since the difference cannot be

calculated with sufficient accuracy for values close to 1. If this happens, h is set to ‘NaN’

and not displayed, thus it is ensured that only values with sufficient numeric accuracy are

displayed. For (correctly built and modeled) safety systems this is never an issue, since Q� 1

is always fulfilled. In transient evaluation mode, this must be fulfilled for each time step, i. e.

not only the final step or an average value.

9.5.1.2 Evaluation Mode

Select whether the Markov model shall be evaluated in steady-state mode or in transient

(time-variant) mode. In case of transient evaluation, the time interval must be set as well.

Quantitative steady-state evaluation

A steady-state analysis is appropriate for all systems that are supposed to operate for many

years, with certain test intervals and optionally some down-times for maintenance and repairs.

Several parts of the system might be replaced or repaired during the system’s lifetime. In case

that all failures are detected in adequate time (either by continuous diagnosis, by periodic

tests or by malfunction of the system), both the failure rate h (PFH) and the unavailability

Q (PFD) of the system don’t depend on its actual age, but will reach some pseudo-stationary

state where both values will oscillate around a mean value. The frequency of this oscillation

is equal to the longest detection interval or a multiple of it. This is even correct in case the

failure rates of some particular components depend on their specific age, if the lifetimes of
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these components are shorter than the system life time. The value of interest for each safety

function performed by such a system is either the mean unavailability on demand Q (PFD),

or the mean occurrence rate h (PFH). The related standard is mainly [EN 61508] and the

derived standards. Examples for those systems are machines, cars, trains, air-crafts, chemical

plants, power plants, etc. and their control systems.

In steady-state evaluation cyclic edges due to periodic tests of generic basic events of type

repairable will be replaced by restoration rates µ, cyclic edges due to periodically occurring

events (edges referring to generic basic events of type cyclic) will be replaced by forward

transition rates λ. Note that these conversions do not correctly reflect reality, but are only

approximations.

In principle a Markov model is evaluated for a steady-state by solving a linear equation

system, whose variables are the state probabilities and whose coefficients are the transition

rates. Probabilities of instantaneous edges are multiplied with the transition rate of the

preceding continuous edge.

The steady-state probability of each state is displayed inside the state’s symbol. Based on

the state probabilities in steady-state, the mean unavailability Q and the mean occurrence

rate h are calculated, see section 9.5 above.

Based on h, finally the expected occurrence number N(T ) is calculated by

N(T ) = h · T (48)

with T being the system lifetime.

A steady-state analysis is very fast, because all values have to be calculated only once (com-

pared to time-variant analysis, where all values have to be calculated many times, see below).

Quantitative transient evaluation

A transient analysis is mandatory, if the ‘mission failure probability’, namely the system’s

unreliability F (0, Tmission), is the value of interest. This is typical for non-restorable systems,

that are supposed to perform their function in a pre-defined way for a pre-defined lifetime

(e. g. a certain mission), such as a rocket or spacecraft. These systems are characterized by

final states without restoration paths.

A transient evaluation is also necessary for time-variant systems, that shall be examined

in detail. The Markov models describing those systems might include edges of type cyclic,

and the restoration might need to be modeled by discrete restoration times. Also if time

variant occurrence rates are used, e. g. due to links to other models or due to generic basic

events of type non-restorable with increasing or decreasing failure rates, a transient analysis

is recommended. In general, a transient (or time-variant) analysis produces more precise

results, but is much slower.

From the mathematical point of view, the model is in principle a linear differential equation

system. Thus for transient evaluation, a differential equation system must be integrated. For
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most practical problems the rates differ for multiple orders of magnitude, thus the differential

equation system is typically stiff. Therefore an implicit integration algorithm is used. If

rates are constant over the lifetime, the differential equation system is time in-variant and

therefore doesn’t need to be created in each step. In any case the system is linear, so the

Jacobian matrix is directly given. In case of non-constant failure rates, the Jacobian must be

calculated for each step, which is quite a time-consuming operation. You should avoid time

variant failure rates, therefore, but it makes no difference whether you’ve got one or many.

The differential equation system only describes the continuous transitions. Due to the exten-

sions of Functional Safety Suite, also instantaneous transitions and cyclic (periodic) transi-

tions occur. Therefore in each step the following is done:

1. calculate all generic basic events, including linked models for the next step

2. create the differential equation system for the next step according to current continuous

transition rates h(t) and µ(t) and current instantaneous transition probabilities and

integrate it for one step

3. determine the changes of all states due to cyclic (periodic) forward transitions

4. determine the changes of all states due to periodic restorations

The occurrence number N(t) is calculated by

N(t) =

t∫
0

h(τ) dτ (49)

The unreliability at a given time t is typically just the sum of the probabilities of the final

states marked as contributing to the unreliability:

Fsys(t) =

n∑
i=0

pfinal,Fi
(t) (50)

If there is at least one restoration from any final state contributing to the unreliability, the

unreliability is automatically calculated via the system occurrence rate hsys:

F (t) = 1− e
−

t∫
0

h(τ) dτ
(51)

The mean values for occurrence rate h and unavailability Q are calculated by

h =
1

T

T∫
0

h(t) dt (52)

and

Q =
1

T

T∫
0

Q(t) dt (53)
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The state’s probabilities after the last calculation step p(Tmission) are displayed in each state’s

symbol. Note that these are displayed for better understanding only, but are in general not

equivalent to the system’s safety values. Therefore they are displayed in light gray.

Time interval: The step size for transient evaluation in hours. A smaller step size means

more steps for the given system lifetime and thus takes more time in calculation. This might

be an issue in case of large systems. The step size must be less than a 10th of the smallest

periodic (cyclic) event you want to evaluate for discrete times. Time constants less than 10

times the step size are handled as rates. However step size should be even smaller in order

to reduce the computational errors.

Example: Given a redundant control system, consisting of two similar channels 1 and 2.

Each channel has two failure modes A and B, optionally with some common cause factor.

The proof test intervals are 24 h and 168 h. Its Markov model is presented in figure 59.

Figure 59: Markov model of a 1-out-of-2 system
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With a step time of 0.5 h, the evaluation considers the tests at multiples of 24 hours and

168 hours, resulting in a h(t) and Q(t) displayed in figure 60.

Figure 60: h(t) and Q(t) for a 1-out-of-2 system with small step size

With a step time of 20 h, the proof test intervals are less than 10 times the step time, so that

a continuous restoration rate of µ is considered instead of a cyclic transition. The resulting

h(t) and Q(t) is displayed in figure 61.

Figure 61: h(t) and Q(t) for a 1-out-of-2 system with large step size

You might wonder why the occurrence rate h(t) is never zero, even in figure 60. This is due to
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the common cause factor between both channels, modeled by direct edges from state “OK”

to some failure states. If you set the common cause factor of both generic basic events to

zero, the result will look completely different, compare figure 62.

Figure 62: h(t) and Q(t) for a 1-out-of-2 system with small step size and small β

9.5.2 Evaluation Parameters – Algorithm Parameters

Figure 63: The Markov model’s algorithm parameters panel
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9.5.2.1 Pre-processing Mode

Starting with version 3.2 of Functional Safety Suite, the common cause factors between edges

of Markov models can be handled automatically for most Markov models. In addition, most

Markov models can be completed automatically. Automatic completion always includes au-

tomatic creation of common cause chains. In both cases, the Markov model finally used for

evaluation will be created internally.

To understand the difference between “direct” chains and “complete” chains, have a look at

the fault tree shown in figure 64.

Figure 64: A simple fault tree.

The Markov model representing the minimal cut-sets of this fault tree is presented in figure 65.

Figure 65: The corresponding Markov model, considering only direct chains.

In fact, event “Rep1” can occur also in states “Rep2” and “Rep3”. The complete Markov

model also considering these degrees of freedom is shown in figure 66. The completed Markov

model also considers, that the system’s state can “jump” from one (yet incomplete) chain to
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Figure 66: The corresponding Markov model, considering only direct chains.

another chain, until a final state is reached — even multiple times. This option includes the

internal creation of common cause chains.

However in most practical systems, the difference is negligible. Here in fact the values have

been selected explicitly in order to show a difference.

Note: If the Markov model is pre-processed, no state probabilities will be shown, since only

the final model is evaluated but not the model displayed in the graphics tab.

The final Markov model used for evaluation can be exported by Export – Export Final

Markov Model. It is recommended to check the correct pre-processing and apply manual

corrections or adaptations if necessary.

9.6 Editing of Markov models

Create a Markov model by File – New Markov Diagram.

You can add states by Edit – Add State and clicking the mouse at the position you want

to set the state. A unique name will be automatically assigned to the new state. At each grid

position, only one state can be placed.

In order to add an edge, select the source state, then select Edit – Add Edge, then click

on the target state. An edge referring to the last generic basic event in the library will be

created. You can select any other existing generic basic event by selecting it via its name and

package in the Edge Properties Panel, see section 9.3.

You can also cut (or copy) and paste states and edges: Select the state by Edit – Cut (or

‘Ctrl+X’) or Edit – Copy (or ‘Ctrl+C’) , then press Edit – Paste (or ‘Ctrl+V’), finally
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click on the position where you want to paste it. For an edge, cut or copy it, then select the

source state, press Edit – Paste (or ‘Ctrl+V’), finally click on the target state.

States are moved by ‘Shift+Cursor’, connected edges will stay connected. If a state is deleted,

all connected edges will be deleted too (the generic basic event will not be deleted of course).

Multiple states and edges can be selected with the mouse, either by clicking the left mouse

key together with ‘Shift’, or by pressing the left mouse key and pulling the selection rectangle

around several states. All edges between selected states will be selected also. A selection can

be moved by holding the left mouse key while dragging, or you can cut or copy and paste it

as single events. All states pasted into the same or another Markov model will get a unique

name, consisting of the original one, appended by a number if necessary to become unique.

Changing properties of states or edges is done in the properties window. The only exception

is the change of the name of an edge (⇔generic basic event), for which a special command

Library – Rename Generic Basic Event is foreseen. The properties of the generic basic

event referred by an edge can be edited in the library view as well, see section 4.1.

A Markov model that has not been saved after the latest modification is marked with an

asterisk ‘*’ in its title.
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10 Complex components

10.1 Introduction

The complex component model has been developed in order to support the calculation of

basic parameters for components characterized by multiple, time-variant failure modes (the

component events). Thus the “bath tub” curve of failure rates can be modeled. Each failure

mode can be defined to be either safe or dangerous.

In the previous sections related to fault trees or Markov models, the mean value h has been

calculated as the arithmetic mean value h = havg = 1
T

∫ T
0 h(t)dt for the given system lifetime

T . This arithmetic mean value can be used only if the unavailability of the system is small.

For all practical system for which the mean failure rate (or hazard rate) h is interesting at

all, this condition is fulfilled, because these systems will be restored (repaired or replaced)

if they are defect. Even if the system is not continuously used, and its failure might not be

immediately detected, therefore, the arithmetic mean value is a good approximation of the

mean hazard frequency over system lifetime. The arithmetic mean value can also be used if

the system lifetime T is short compared to the mean lifetime of each component, i. e. if the

MTTF of each component is greater than the system lifetime.

In order to understand the necessity of the complex component model, have a look at figure 67.

This figure shows typical variations of failure rate h(t), failure density f(t) and unreliability

Figure 67: A component with several failure modes.

F (t) over time. If you have such components in your system, you’ll have to determine a

mean failure rate λ = h that you can use in a fault tree or Markov model in steady-state

evaluation, or a time dependent failure rate h(t) that can be used for transient evaluation. If

the component is very “good”, i. e. if it will probably not fail during system lifetime, you can

use the arithmetic mean failure rate h for use in other models. For transient evaluation, you

can directly use the time dependent failure rate h(t) in that case.
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If the component is likely to fail during system lifetime, its mean failure rate h has to be

calculated via its MTTF 9. For all failure distributions, the MTTF is given by

MTTF =

∞∫
0

t · f(t) dt (54)

With the general relationship between any failure density and failure rate function

f(t) = h(t) ·R(t) = h(t) · e
−

t∫
0

h(τ) dτ
(55)

the MTTF can be calculated based on the failure rate function h(t) by

MTTF =

∞∫
0

t · h(t) · e
−

t∫
0

h(τ) dτ
dt (56)

This is the complete MTTF or natural MTTF, that can be found by experiment if you

operate many of these components until they fail. The arithmetic mean value of all times

until failure will be the MTTF. For the component shown in figure 67, the natural MTTF is

about 25 000 h. If you use this component in a system that you intend to use for 200 000 h,

you’ll need 7 (maybe 8) spare components per system throughout its lifetime. The mean

failure rate is h = 1
MTTF ≈ 4E−5/h. 10

If a failure of this component is associated with a significant damage of other parts of the

system (as for example the rupture of the timing belt of a Diesel engine), or if the failure is

even safety critical, and the failure rate function has a considerable increasing part (similar

to that shown in figure 67), preventive change makes sense. In case of preventive change at

time T = Tchange, the incomplete MTTF(T) or effective MTTF(T) is given by

MTTF(T ) =

T∫
0

t · f(t) dt+ T ·R(T )

F (T )
=

T∫
0

t · f(t) dt+ T ·
(
1− F (T )

)
F (T )

=

T∫
0

t · f(t) dt+ T

F (T )
− T

=

T∫
0

t · h(t) · e
−

t∫
0

h(τ) dτ
dt+ T

1− e
−

T∫
0

h(t) dt

− T

(57)

For T →∞ the incomplete MTTF(T) migrates to the complete MTTF.

Finally imagine some kind of a normally closed electromagnetic valve with the following main

failure modes:

9If you try to calculate a mean failure rate via arithmetic mean value, you’ll get a too high value — if you

don’t fail due to numeric calculation issues.
10The arithmetic mean value is havg(200 000 h) ≈ 4E−3/h, i. e. 100 times too high.
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• fail to open due to a coil failure

• fail to open due to blockage of the gasket

• fail to open due to corrosion

• fail to close due to a broken spring

• fail to close due to blockage of the gasket

• fail to close due to mechanical obstruction

• fail to close due to corrosion

Let’s assume that failures to open are safe, failures to close are dangerous in a given appli-

cation. Let’s further assume, that some failures are early failures (production faults), some

are late failures (due to wear), some might have a nearly constant failure rate. Obviously

you have to distinguish between safe and dangerous failure modes in some way, and thus

an overall component failure rate and a dangerous component failure rate hd or hd(t). Let’s

finally assume, that the valve is supposed to be replaced in certain intervals — how will this

action affect the overall dangerous failure rate, and which is the optimal interval to replace

the component?

The effective dangerous MTTF(T) is given by

MTTFd(T ) =

T∫
0

t · f(t) dt+ T ·R(T )

T∫
0

ϕd(t) dt

=

T∫
0

t · h(t) ·R(t) dt+ T ·R(T )

T∫
0

hd(t) ·R(t) dt

=

T∫
0

t · h(t) · e
−

t∫
0

h(τ) dτ
dt+ T · e

−
T∫
0

h(t) dt

T∫
0

hd(t) · e
−

t∫
0

h(τ) dτ
dt

(58)

where hd(t) denotes the dangerous failure rate and h(t) the overall failure rate. Obviously,

this formula cannot be calculated with universal spreadsheet tools or calculators due to the

complicated double integrals, that cannot be expressed in closed-form.

In contrary to all other kinds of models, complex components make no use of generic basic

events, since their failure modes are directly stated in the model. Each component event

(failure mode) can be specified to be safe or dangerous, see section 10.4 below for details.

Summary

The complex component model will calculate the following values according to the component

events and the component properties: 11 .

Mean time to failure: The (natural, complete) MTTF is the mean life time of the com-

ponent. It is relevant if it is short compared to the (intended) system lifetime and the

11In principle, the algorithm is able to calculate these values for any kind of failure distribution function.

By default, only Weibull distribution is available, other distributions can be added on demand.
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component is not exchanged in certain intervals, but operated until it fails.

Mean time to dangerous failure: The (natural, complete) MTTFdang is relevant if the

components overall MTTF is short compared to the (intended) system lifetime and the

component is not exchanged in certain intervals, but operated until it fails.

Mean time to dangerous failure with preventive exchange: If the actual component

life time T in the application is much shorter than the MTTF, the failure modes with

increasing failure rates will occur rarely, thus the reliability and safety of the component

tends to be determined by the failure modes with decreasing or constant failure rates.

Therefore in that case the MTTFdang is calculated for the actual mean component life

time T as well. Often T is defined by a preventive exchange interval, so this value is

named MTTFdang,prev(T ). Nevertheless T might also be given by the overall system life

time (stated in the project properties dialog) or by the change interval or the MTTF

of the assembly group that contains the component.

Mean failure rate: The mean failure rate λ is the reciprocal of the MTTF.

Mean dangerous failure rate: The mean dangerous failure rate λdang is the reciprocal of

the MTTFdang.

Mean dangerous failure rate with preventive exchange: The mean dangerous failure

rate for shortened life time λprev,dang is the reciprocal of the MTTFdang,prev(T ) (if it

exists).

Time to 10% failed components: The time at which 10% of a large number of compo-

nents have failed either safely or dangerously T (B10). This is equivalent to the time at

which the overall reliability R(T (B10)) = 0.9 or the overall unreliability F (T (B10)) =

0.1.

Time to 10% dangerously failed components: The time at which 10% of a large num-

ber of components have failed dangerously T (B10d). This is equivalent to the time at

which the dangerous unreliability Fd(T (B10d)) = 0.1. Note that this value only exists,

if at least 10% of the components can fail dangerously at all, that is not more than 90%

of the components already failed safely before.

The complex component model can be linked to all other models, such as fault trees and

Markov models. If the complex component is referred in other models by links, the mean

occurrence rate h, the mean unavailability Q, the unreliability F (T ) or the time variant values

h(t), Q(t) or F (t) are transferred as described in section 2.4 and section 10.3 below.

10.2 The Component Properties Panel

The component properties are presented, if no event is selected (see figure 68).

All properties of the complex component are stored in the component file (extension .cmp).

A complex component that has not been saved after the latest modification is marked with

an asterisk ‘*’ in its title.



10 COMPLEX COMPONENTS 135

Figure 68: A component with several failure modes (component events) with time-variant

failure rates.

10.2.1 General Properties

Description:

A user defined description of the complex component.

10.2.2 Component Properties

10.2.2.1 Max component life time

If the component life time is defined by preventive exchange in certain intervals or by the life

time of the assembly group of which it is part, this can be stated here.

If the stated value is greater than zero, less than the system life time defined in the project

properties dialog, and less than the complete MTTF of the component, the stated value will be

used for the calculation of the effective MTTF and some other values (see below). Otherwise

if the complete MTTF is greater than the system life time defined in the project properties

dialog, the system life time is used for the calculation of these values. If both conditions are

false, the MTTF is used for further calculations.
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10.2.2.2 Repairable or replaceable

If the component is tested in certain intervals (and replaced if a fault is detected), select this

checkbox and set the following values accordingly.

Test interval: The interval in which the component is tested for hidden (“sleeping”) faults.

Test time offset: If tests of several components are performed with a defined time differ-

ence, this offset (related to system start time) can be stated here. Overall system unavail-

ability will become less if tests are performed at different times. This value is only used in

transient evaluation.

Repair time: The time needed to repair the component in case a fault has been detected

in the test.

10.2.3 Evaluation mode

Note: In this section, whenever h or h(t) is written, the (dangerous) failure rates handed over

to any higher level model are meant.

Select which value is of interest. In fact there is no difference in the algorithm, only some

warnings might differ, and the value(s) displayed in the graphics tab.

As for fault trees and Markov models you can select between steady-state or transient eval-

uation mode. In case of transient evaluation, the time interval must be set as well.

In case of steady-state evaluation, the mean values h or Q or the maximum unavailability

Qmax or the final unreliability F (T ) will be handed over to any higher level model (fault tree

or Markov model). In case of transient evaluation, if the higher level model is evaluated in

transient mode as well, the values h(t), Q(t) or F (t) will be handed over to the higher level

model.

10.3 Values handed over to higher level models

The calculation of unavailability and unreliability depends on the expected event that most

probably determines the end of life of the component. In reality, the life of a component will

end when one of the following events occurs:

Case 1: The life of the overall system ends (as defined in the project properties dialog).

Case 2: The life of the subsystem, which contains the component, ends, or the component

is replaced in predefined intervals (defined by the parameter component life time, see

section 10.2.2.1 above).

Case 3: The component fails safely (so that the system goes to a safe state). The component

must be replaced by a new component before the system can be used again.

Case 4: The component fails dangerously. This case has three sub-cases:
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Case 4a: The component is part of a safety barrier or a redundancy. Thus its failure

doesn’t directly lead to an accident. Those components are normally checked in

certain intervals. If a fault is detected, the component is replaced by a new one.

Case 4b: The dangerous failure of the component directly leads to an accident (or at

least to a hazard, that is immediately detected), but not to the loss of the overall

system. The component will be replaced after all and the system will continue

operation.

Case 4c: The dangerous failure of the component directly leads to a loss of the system

(e. g. a severe accident, that destroys the system).

Depending on the design of the component and the system, either one of the cases might

be the by far most probable case, or it might not be clear, which case will usually end the

component’s life. In Functional Safety Suite the following definition applies:

corresponding to case 1: If the (natural) MTTF is greater than the system lifetime Tsys

and there is no lifetime limitation set (see section 10.2.2.1 above), it is assumed that the

component’s life usually ends with the overall system life. Thus the mean (dangerous)

occurrence rate is given by

h = 1/MTTFdang(Tsys) (59)

The dangerous occurrence rate hdang(t) is equal to the sum of the time variant failure

rates of the dangerous failure modes

h(t) = hdang(t) =

ndang∑
i=1

hi,dang(t) (60)

corresponding to case 2: Else if there is a lifetime limitation Tlife,max (see section 10.2.2.1

above) and the (natural) MTTF is greater than this limitation, it is assumed that the

component’s life ends at Tlife,max. Thus the mean (dangerous) occurrence rate is given

by

h = 1/MTTFdang(Tlife,max) (61)

The dangerous occurrence rate hdang(t) is equal to the sum of the time variant failure

rates of the dangerous failure modes

h(t) = hdang(t) =

ndang∑
i=1

hi,dang(t mod Tlife,max) (62)

corresponding to cases 3 and 4: Else it is assumed that the component’s life usually ends

with component failure. Thus the mean (dangerous) occurrence rate is given by

h = 1/MTTFdang (63)

Since in these cases the exchange times cannot be predicted, the time-variant (danger-

ous) occurrence rate hdang(t) cannot be predicted. Therefore the mean occurrence rate

h is used also in transient evaluation.
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Regarding unavailability Q and Q(t), it is assumed that safe failures don’t contribute to

(safety related) unavailability. This is reasonable, since “safe failure” means, that the overall

system goes to a “safe state”, and thus it doesn’t matter for safety, how frequently this state

is entered and for how long the system stays in this state. Therefore Q and Q(t) depend

on the frequency of dangerous failures and the mean time to detect them. If the dangerous

failure cannot be detected (what includes, that it doesn’t directly lead to an accident), it will

remain in the component and thus in the system, until the component is exchanged due to

other events (safe failure of the component, preventive exchange, life end of the system or

assembly group).

10.3.1 Unavailability of periodically tested components

Note: In this section, whenever h or h(t) is written, the (dangerous) failure rates calculated

as described in section 10.2.3 are meant.

Components that can fail dangerously without immediately causing an accident are usually

periodically tested.

For components that are tested periodically, Q, Qmax and Q(t) are calculated based on the

mean occurrence rate similar to generic basic events of type repairable

Q =
e−h·Tcheck − 1

h · Tcheck + h · Trepair · (1− e−h·Tcheck)
+ 1 (64)

In transient evaluation, if Tcheck is greater than 10 times the step time tstep, the current

unavailability Q(t) is given by

Q(t) = 1− (1−Qrepair) · e−(1−Qrepair)·h·((t−t0) mod Tcheck) (65)

with t0 being the time to the first test (the “phase shift” of the test) and Qrepair the (mean)

unavailability due to the repair time Qrepair =
h·Trepair
h·Trepair+1

:

Q(t) = 1− e
−
h · ((t− t0) mod Tcheck)

h · Trepair + 1

h · Trepair + 1
(66)

The maximum unavailability Qmax is given by equation (66) with t = Tcheck:

Qmax = 1− e
−

h · Tcheck

h · Trepair + 1

h · Trepair + 1
≈ 1− e−h·(Tcheck+Trepair) (67)

The return rate used in Markov models in steady-state evaluation is given by

µ =
h

Q
− h (68)

In transient evaluation, if tcheck is greater than 10 times the step time tstep, the return to the

origin state is performed cyclically at times ti = n · Tcheck + T0 + Trepair.
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10.3.2 Unavailability for non-tested components

Note: In this section, whenever h or h(t) is written, the (dangerous) failure rates calculated

as described in section 10.2.3 are meant.

If the maximum lifetime of the component is limited by the preventive exchange interval

Tlife,max, the (dangerous) unavailability Q(t) is given by the (dangerous) unreliability consid-

ering the replacements:

Q(t) = Fdang(t mod Tlife,max) (69)

The mean unavailability Q is conservatively defined as the maximum unavailability which is

equal to the unreliability at the end of the exchange interval Tlife,max:

Q
!

= Qmax = Fdang(Tlife,max) (70)

The same applies if the lifetime is limited by the assembly group (in case the lifetime of

the assembly group is not clearly defined, enter a time significantly bigger than the mean

lifetime).

If Tlife,max is not given, the maximum lifetime of the component is given by the overall system

lifetime Tsys. In that case the dangerous unavailability Q(t) is equal to the unreliability due

to the dangerous failure modes:

Q(t) = Fdang(t) (71)

The mean unavailability Q is conservatively defined as the maximum unavailability which is

equal to the unreliability at the end of the system’s lifetime Tsys:

Q
!

= Qmax = Fdang(Tsys) (72)

10.4 The component failure mode properties panel

Figure 68 shows a complex component with six component events (different failure modes of

the component). If a component event is selected, it’s properties are shown on the left, see

figure 69.

10.4.1 General Properties

Name:

A user defined identifier of the component event. Every component event should have a

different name.

Description:

A user defined description of the component event.



10 COMPLEX COMPONENTS 140

Figure 69: One out of several failure modes of the component.

10.4.2 Probability Values

Weibull distribution parameters

In Functional Safety Suite version 6.0 each component event is assumed to be Weibull dis-

tributed. Thus the failure density function f(t) is given as

f(t) = λ · k · (λ · (t− t0))k−1e−(λ·(t−t0))k (73)

with k being the Weibull exponent.

The failure rate h(t) of the single component event is therefore given by

h(t) = λ · k ·
(
λ · (t− t0)

)k−1
(74)

Note that a delay time t0 > 0 only makes sense for decreasing failure rates and thus is allowed

only if k ≥ 1.

T(B10)

For convenience you can also specify the b10-time T (B10) for this failure mode, if you’ve got

this value. Nevertheless the Weibull exponent k must be defined as well, with 3.0 being the

default.

Specification by T (B10) is only supported for t0 = 0.

Is safe

Each component event can be either safe or dangerous. Note that safe failures need to be

modeled as well (if they exist), since they significantly affect the calculated values, including

MTTFdang etc.
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Note: If you’re performing non-safety related calculations (e. g. operational reliability or

availability calculations), you’ll feel no need to distinguish between “safe” and “dangerous” –

it’s just a failure mode. In that case, you’ll have to define all failure modes to be “dangerous”,

because only the “dangerous” values will be handed over to any higher level model.

10.4.3 Background Color

The background color can be selected separately for each component event. By default, safe

failure modes have light green background, dangerous failure modes have light red background.

If you select white background, these default values will be used instead.

10.5 Editing of complex components

Create a complex component by File – New Component.

In order to add or delete events, select an event with the mouse, then press a button in the

tool bar or select a command in the menu bar.

Changing properties of component events is done in the properties window.

10.6 The Component Chart Window

After performing a calculation of a complex component, the temporal variation of the calcu-

lated values can be visualized in a separate window.

Figure 70: A component chart window

By default, the dangerous values are displayed only: The unreliability Fd(t), the failure rate

hd(t), the failure density fd(t) and the effective mean time to dangerous failure MTTFdang(T )
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for a component life time T . Optionally the overall values can be displayed as well, just select

the corresponding check-boxes in the ‘Display’ menu. They will be presented by dashed lines.

All axis can be scaled and zoomed.

The presented graphics can be exported to a vector graphic (.svg) or a bitmap (.png). Note

that in vector graphics format, the graph data is exported with original resolution, so a later

printout will have a very high quality (if not reduced by the later processing).
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11 Menus and Commands

11.1 Generals

The descriptions of models or events are immediately changed whenever you type a key in the

description field. All other numerical or text values are changed after pressing ‘Enter’ only.

Note that not all commands or properties will be available in a specific situation. Typically

only those possibilities, that make sense and result in a valid model are offered. In the case

that an error occurs when executing a command, an error message is displayed in the status

bar or in the message window.

11.2 The File Menu

This menu contains all commands related to the project, its packages, models and libraries.

Most commands are also available in pop-up menus that open when pressing the right mouse

button in the project members tree.

11.2.1 New Project

If there is an open project this will be closed. If necessary you are asked to save data. After

that a dialog will appear where you are asked for a name of the new project. Finally an

empty project will be created.

11.2.2 Open Project

If there is an open project this will be closed. If necessary you are asked to save data. After

that a dialog will appear where you can select the project to be opened. All libraries and

models referred in the project file will be opened and indicated in the ‘Project Members’ tree.

11.2.3 Close Project

The current project is closed. If necessary you are asked to save changes in the project,

libraries or models.

11.2.4 Project Properties

A project properties dialog window will open where you can set the project properties. Refer

to section 3.4 for details.

11.2.5 Create new Package

A new package is created by File – Create new Package. You will be asked for the name of

the new package. A sub-directory with the given name will be created in the project directory,

and the local library file will be created.
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11.2.6 Import Package

A package created in one project can be imported to the currently open project. When

selecting File – Import Package, a dialog will open up where you can select the package

directory, and enter a new package name, see figure 71.

Figure 71: Import package dialog

The package will be copied to the open project, using the entered name.

11.2.7 Create new Model

A new model is created by File – Create new Model. The Create New Model Dialog will

open, where you can select the package the new model shall belong to, and the name and

type of the new model, see figure 72.

11.2.8 Add existing Model

When selecting File – Add existing Model, a dialog will appear where you can select the

model file to be added to the project. Per default, only model files with extension .ignore

will be displayed. Anyhow you can also select other model files, including models already

belonging to the project.

You can select the package to which the model shall be added, and enter a name for it.

If not all generic basic events referred by the imported model’s basic events are available in

the open project, new generic basic events with the referred names are created with default

data. You will have to add correct data to these cases before the model can be evaluated. If

you forget to do so, the next calculation will show wrong results.

If the model to be added refers generic basic events from another package, you should import

the generic basic events before via Library – Import from other library or project, see
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Figure 72: The create new model dialog

Figure 73: Add existing model dialog

section 11.4.6. This command should be used for the local library, since the missing generic

basic events should be added to the local library. Since the import function for generic basic

events will not override generic basic events already existing in the library, the import must

be executed before adding the model (before creation of default generic basic events).

11.2.9 Remove active Member

The reference to the model presented in the active tab will be removed from the project, the

tab will be closed. If necessary you are asked to save data of this model.
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If there are references from other models to the one to be removed, you are asked for confir-

mation, since these model cannot be evaluated anymore afterwards.

11.2.10 Rename active Model

The model presented in the active tab can be renamed by File – Rename active Model.

A dialog will appear asking you for a new name.

Figure 74: Rename model dialog

If there are links to this model, you’ll have to update the links (i. e. the generic basic event)

manually.

11.2.11 Move active Model

The model presented in the active tab can be moved to another package by File – Move

active Model. A dialog will appear asking you for a new package.

11.2.12 Duplicate active Model

The model presented in the active tab can be duplicated by File – Duplicate active Model.

A dialog will appear asking you for the package and the name of the duplicate, see figure 75.

Figure 75: Duplicate model dialog

Note that if you duplicate the model to another package, the generic basic events of the

original local package won’t be reachable anymore.

11.2.13 Save active member

Saves the model currently displayed in the graphics tab. If this is for the first time after

creation, you’ll be asked for a location and file name. The file extension is automatically
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appended.

11.2.14 Save All

All models, the library and the project are saved if changed. Note that a project, that has

not been saved after the latest modification, is marked with an asterisk ‘*’ in the window

title. An unsaved model is marked with an asterisk ‘*’ in the title of its graphics frame.

11.2.15 Save As

The model in the active tab is saved as a new file. A dialog will appear asking you to select

a location and file name. The reference in the project is replaced by the new file. The old file

will remain unchanged.

11.2.16 List of recently used projects

A list of recently used projects is presented. Selecting one is similar to File – Open Project,

only that no dialog will appear.

11.2.17 Exit

If necessary you are asked to save changes in the project the library or in models. After that

the application is terminated.

11.3 The Edit Menu

The Edit menu contains all commands related to changing the structure of a model.

The most often needed actions are directly available as button in the menu bar. For some

actions keyboard commands (short-cuts) exist, see the entries in the Edit menu.

11.3.1 Undo last change

The last ten actions can be withdrawn. Here an action can be either an edit-action as stated

above or a change of a model or generic basic event property in the properties window on

the left. So this command is not only related to the structure of a model. The tool-tip text

always informs about the next action of the undo-action.

11.3.2 Redo last undo

All undo actions can be withdrawn.

11.3.3 Add condition

To add a new condition in an event tree, select the hazard or the previous conditionand press

Edit – Add Condition. A new condition will be created and inserted after the marked

condition.
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11.3.4 Add case

After selecting a condition in an event tree, a case can be added to the condition by Edit

– Add Case. Each case refers to a generic basic event, which determines its probability.

Typically the immediate event model is used, allowing to directly enter the probability p.

But also all other models that deliver a unavailability Q can be used, including links. When

adding a case, the new case will refer to the last generic basic event in the library.

11.3.5 New Damage

After selecting a damage in an event tree, its generic damage can be replaced by a new generic

damage. The user is asked for a name of the new generic damage.

Note: To use an already existing generic damage, just select it in the General Properties

panel.

11.3.6 Set Select Mode

The default mode of the architecture editor. You can select one component part, or any

combination of complex components and corners and lines of nets. Note that Cut/Copy and

Paste is only possible if exactly one complex component is selected.

11.3.7 Add Component Mode

Select Add Component Mode and click to a position in the architecture. A dialog will open,

see figure 76.

Figure 76: Create architecture component dialog

Select class and name of the new component.

11.3.8 Select Draw Net Mode

In order to connect pins of architecture components, select this mode. Start drawing by click

on a pin or an existing net line or corner, and click for a new corner or at another pin, line

or corner. A line can be finished by double-click at any point on the grid.
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11.3.9 Convert to Fault Tree

Derive a fault tree for the current architecture. See section 6.6 for details.

11.3.10 Add Failure

In a complex component model, a new failure mode (component event) is created and added

to the right.

11.3.11 Add Block Serial

In a reliability block diagram a new block is created and added in series to the selected

block(s).

11.3.12 Add Block Parallel

In a reliability block diagram a new block is created and added in parallel to the selected

block(s).

11.3.13 Add Tree Basic Event

A new basic event is created below the currently selected gate in a fault tree. By default

the newest generic basic event is used therefore, hence the generic basic event created with

the last call of Library – New Generic Basic Event (see section 11.4.1) or Library –

Duplicate Generic Basic Event (see section 11.4.4).

11.3.14 Add Gate

A new default gate is created below the currently selected gate in a fault tree. You can add

basic events to this gate by Edit – Add Basic Event, Library – Create Generic Basic

Event or Edit –Paste.

11.3.15 Convert to Transfer-In

The selected block of a reliability block diagram is converted to a Transfer-In block.

11.3.16 Convert to Gate

The selected basic event in a fault tree is converted to a gate (maintaining the name and

description).

Note: You should change the name of the gate to avoid multiple different events (here a basic

event and a gate) having identical names.

11.3.17 Convert to Subtree

A new fault tree is created whose top event is the marked gate. The marked gate is replaced

by a new gate of type transfer-in. The name and the description of the former gate are
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preserved. You can change the names of the gates and the description of the top event of

the new fault tree manually. Remember to change the reference in the new transfer-in gate

if you change the name of the top event of the new fault tree.

11.3.18 Convert Reliability Block Diagram to Fault Tree

A new fault tree is created based on the active reliability block diagram. The new fault tree

is added to the same package. The name of the fault tree will be that of the reliability block

diagram, extended by FT.

11.3.19 Convert Reliability Block Diagram to Markov Model

A new Markov model is created based on the active reliability block diagram. The new

Markov model is added to the same package. The name of the Markov model will be that of

the reliability block diagram, extended by MM.

The PAND mode selected for the reliability block diagram — ‘direct chains only’ or ‘complete

chains’ (see section 7.5.3) — also applies.

Converting a reliability block diagram to a Markov model is a very complex task. For most

reliability block diagrams, this function will do all the work perfectly. However it is generally

not possible to model all restorations correctly, because a fault tree (or RBD) doesn’t provide

information about the restoration strategy. This function will create restorations that usually

fit to most systems, however you should check the restoration edges manually.

11.3.20 Convert Fault Tree to Reliability Block Diagram

A new reliability block diagram is created for the active fault tree. The new reliability block

diagram is added to the same package. The name of the reliability block diagram will be that

of the fault tree, extended by RBD.

11.3.21 Convert Branch to Markov Model

A Markov model is generated for the branch, topped by the selected gate. The fault tree

itself remains unchanged.

The new Markov model gets the same name as the fault tree plus the name of the gate. It

is directly added to the project, thus you can open it by clicking on its name in the ‘Project

Members’ tree.

The PAND mode selected for the fault tree — ‘direct chains only’ or ‘complete chains’ (see

section 7.5.3) — also applies.

Converting a fault tree to a Markov model is a very complex task. For most fault trees,

this function will do all the work perfectly. However it is generally not possible to model all

restorations correctly, because a fault tree doesn’t provide information about the restoration
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strategy. This function will create restorations that usually fit to most systems, however you

should check the restoration edges manually.

11.3.22 Import Markov Chains

It is possible to import previously created Markov chains. Since all states and edges of the

Markov model will be deleted when importing Markov chains, this command is only available,

if the active Markov model contains maximum 2 states.

The file containing the Markov chains can be created by Export – Export Markov Chains

if a gate is selected in a fault tree. Since it is an XML file, it can also be created manually,

or based on the export of another program.

11.3.23 Add Edge

In order to add an edge in a Markov model, select the source state, then select Edit – Add

Edge, then click on the target state. An edge referring to the last generic basic event in the

library will be created.

11.3.24 Add State

You can add states to a Markov model by Edit – Add State and clicking the mouse at the

position you want to set the state. A state will be placed to the nearest grid point. A unique

name will be automatically assigned to the new state. At each grid position, only one state

can be placed, so if there is a state at the nearest position on grid already, no state will be

added.

11.3.25 Adjust State Names and Positions to other Model

Sometimes you might want to adapt the state names and/or state positions to those of another

Markov model with similar structure. This is achieved with this command: In the first step,

the structure is analyzed in order to identify similar states. Two states of two Markov models

are similar, if there is at least one Markov chain, that leads to both of them. A state identified

as being similar gets the name of its counterpart in the reference model. However since other

chains leading to these two states might differ, there might be multiple similar states, and

thus multiple states that would be renamed to the same name. In this case, the new name

is appended automatically by a number, so that it becomes unique. In the second step, each

state having the same name as a state in the reference model is set to the position of its

counterpart in the reference model.

11.3.26 Delete

If a case of an event tree is selected, this case will be deleted from the condition.

If a component part is selected, which is not mandatory for the class of the architecture

component, and which is not connected to a net, it will be deleted.
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If a s

If a condition of an event tree is selected, the condition will be deleted, but only if it doesn’t

contain any cases.

In an architecture, the selected elements will be deleted. If a component part is selected, it

will only be deleted if it is not connected to any net and if this is allowed according to the

class of the architecture component.

If a failure mode (component event) of a complex component is selected, it will be deleted.

If a basic event of a fault tree or a block of a reliability block diagram is selected, it will be

deleted if there remain enough inputs of the parent gate (see section 7.4 for how many inputs

a gate of a certain type needs).

If a gate is selected, it will be deleted and its input events will be shifted to its parent gate.

If an edge is selected, it will be deleted.

If a state is selected, it will be deleted including all edges connected to it.

11.3.27 Delete Component or Selection

A selection of architecture components and/or nets can be deleted with Del.

If a component part is selected, the complete architecture component can be deleted by

Ctrl+Del.

11.3.28 Delete Branch

The branch topped by the selected gate will be deleted.

11.3.29 Cut

The selected case, condition, component event, basic event, state or the branch topped by

the selected gate will be deleted.

A deleted component event, basic event, state or branch is stored in the background so that

it can be pasted somewhere later on. A case or condition cannot be pasted, therefore the

‘cut’ command is the same as a ‘delete’ for these events.

11.3.30 Copy

The selected damage, component event, basic event, state or the branch topped by the selected

gate will be copied to a background memory. It can be pasted somewhere later on, see below.

11.3.31 Paste

If a event tree is active and a damage is selected, and a damage has been copied before, the

generic damage of the selected damage is replaced by that of the copied damage.
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If a complex component is active and a component event is selected, the component event is

pasted as new event to the component.

If a fault tree is active and a gate is selected, a basic event or branch copied or cut before is

pasted as new input to the selected gate.

If a Markov model is active and a state is selected, an edge copied or cut before will be added

starting in the selected state. Click to another state in order to set the target of the edge

just as for the Edit – Add Edge command.

If a Markov model is active, no state is selected, and a single state has been copied or cut

before, it will be added after clicking to an empty position.

If a Markov model is active, no state is selected, and multiple states and edges have been cut

or copied before, they will be added to the active Markov model below or at the right of the

existing states.

11.3.32 Paste Serial

The saved block(s) will be added in series to the selected block(s) of the reliability block

diagram.

11.3.33 Paste Parallel

The saved block(s) will be added in parallel to the selected block(s) of the reliability block

diagram.

11.3.34 Move Left/Move Right

In an event tree the selected condition is moved one position right or left.

In a fault tree the selected basic event or the branch topped by the selected gate is moved

one input to the left or to the right.

Note: This command is not available for children of inhibit gates.

In a Markov model the selected state is moved to the next free position left or right of its

current position.

In a reliability block diagram the selected blocks are moved left or right. This is equivalent

to changing the sequence of the inputs of an OR-gate.

11.3.35 Move Up

In a fault tree the selected basic event or branch topped by the selected gate is moved one

level up. If the parent of the selected event is an inhibit gate or will get too few inputs the

command is ignored.
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In a Markov model the selected state is moved to the next free position over of its current

position.

In a reliability block diagram the selected blocks are moved up. This is equivalent to changing

the sequence of the inputs of an AND-gate (or another conjunction gate).

11.3.36 Move Down

In a Markov model the selected state is moved to the next free position under its current

position.

In a reliability block diagram the selected blocks are moved down. This is equivalent to

changing the sequence of the inputs of an AND-gate (or another conjunction gate).

11.4 The Library Menu

11.4.1 New Generic Basic Event

A dialog will appear, where you can enter the name of the new generic basic event. If no

generic basic event with the entered name already exists, a new generic basic event will be

created with default data.

If a basic event of a fault tree or an edge is marked, or a case of an event tree, the new generic

basic event will be assigned to it automatically.

If a gate is marked, a new basic event referring to the new generic basic event will be created

and added to the gate if possible.

11.4.2 Rename Generic Basic Event

If a basic event or an edge is marked, or a case of an event tree, the name of the referred

generic basic event can be altered. A dialog will appear, where you can enter a new name.

If a generic basic event with the new name already exists, you are asked for another name.

The operation is executed on the existing generic basic event, no new generic basic event is

created. Therefore the names of all basic events referring to this generic basic event in all

models will change.

11.4.3 Move Generic Basic Event

Move the selected generic basic event to another package. A dialog will open where you can

select the new package.

11.4.4 Duplicate Generic Basic Event

Duplicate the selected generic basic event to another package. A dialog will open where you

can select the new package and the new name.
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11.4.5 Remove unused Generic Basic Event (GBEs)

Generic basic events are not deleted automatically (you can see this by checking the name

list in the properties panel of a basic event of a fault tree or an edge). Thus if you remove

a model from a project or delete basic events from a model, it will happen, that the library

contains generic basic events not used anymore in any model of the project. When this menu

action is selected in the library view, these unused generic basic events are removed from the

library.

11.4.6 Import from other library or project

If you select this action in the library view, a dialog will appear, where you can select a

library file (.lib). The generic basic events defined in the selected file will be copied to the

currently shown library.

Those generic basic events with names already existing in the new library will not be copied.

The messages in the output window will provide detailed information.

11.4.7 Export to CSV file

If you select this action in the library view, a dialog will appear, where you can enter a file

name. All generic basic events of the library will be saved in a text file, one event per line.

Line breaks in the description will be replaced by spaces.

11.5 The Zoom Menu

Selects the zoom factor of the models and exported bitmap graphics (.png) of the models.

11.6 The Calculate Menu

11.6.1 Calculate Model Values

The probabilistic values of the model in the active tab are calculated. This includes the

calculation of all referred sub-trees or linked models. For details and parameters related to

calculation, see the model type specific sections in this guide.

11.6.2 Calculate importances

This action is only available after successful calculation. A dialog will appear, where you can

select which importances shall be calculated, see figure 77.

For explanations of the available importances, see appendix A.

The results are shown in a separate window, see figure 78. The values can be exported as

(complete) HTML file, as a HTML snippet (to be included in another HTML file) or as CSV

file (in order to import it further evaluate them e. g. in a spreadsheet program).
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Figure 77: The importances dialog

Figure 78: The importances window

11.6.3 Determine and show Prime Implicants (Minimal Cut-Sets)

This action is only available after successful calculation. The prime implicants for unavail-

ability, occurrence rate or unreliability (depending on the selected value in the fault tree

evaluation properties dialog) of the top event of the fault tree or reliability block diagram

presented in the active tab are determined. After the prime implicants have been determined,

they will be shown in a new window.

A prime implicant consists of one or several conjuncted basic events. The basic events are

separated by asterisks ‘*’. Each implicant is stated in a separate line. For coherent fault trees,

the prime implicants are identical to the minimal cut-sets. For non-coherent fault trees, prime
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implicants are not canonical, i. e. there are multiple equivalent sets of prime implicants in

general.

As in the name fields of basic events, the first dot (‘.’) separates name and suffix. Multiple

parts of the suffix created by Transfer-In gates are also separated by dots. The part after the

first dot is the name of the highest level Transfer-In gate, followed by lower Transfer-In gate

names down to the original suffix of the basic event.

The values can be exported as (complete) HTML file, as a HTML snippet (to be included

in another HTML file) or as CSV file (in order to import it further evaluate them e. g. in a

spreadsheet program).

Note: The number of lines shown in the window and exported to a HTML file is limited to

the number stated in the project properties dialog, see section 3.4.4.2. The CSV file export

will include all prime implicants.

11.6.4 Check to SIRF Rules

The qualitative fault tree is checked against [SiRF] rules.

11.6.5 Show Chart

After performing a transient (time-variant) evaluation, the temporal variation of the calcu-

lated values can be visualized in a separate window.

Figure 79: A chart window

By default, the values selected in the model-specific dialog are displayed. Optionally, ad-

ditional values might be available for display, depending on the type of the model and the

evaluation parameters.

All axis can be scaled and zoomed.
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The presented graphics can be exported to a vector graphic (.svg) or a bitmap (.png) file,

select File – Export ... in the menu of the chart. Note that in vector graphics format,

the graph data is exported with original resolution, so a later printout will have a very high

quality (if not reduced by the later processing).

11.6.6 Show Component Chart

After performing the evaluation of a complex component, the temporal variation of the cal-

culated values can be visualized in a separate window. See section 10.6 for more details.

11.7 The Export Menu

11.7.1 Create Report

Create a report, see appendix B.

11.7.2 Update Report

Update an existing report, see appendix B.

11.7.3 Export Graphic as PNG

The graphic of the currently shown model is saved as portable network graphic (.png) in the

graphics sub-directory below the package directory. The selected zoom factor is applied as

well as the current markings, but the output is not limited to the visible part. The resolution

will be twice the resolution of the display.

11.7.4 Export All Graphics as PNG

The graphics of all models, for which a tab exists in the model graphics tab pane, are saved

as portable network graphic files (.png) in the graphics sub-directory below the package

directory.

11.7.5 Export Graphic as SVG

The graphic of the currently shown model is saved as scalable vector graphic (.svg) in the

graphics sub-directory below the package directory. Markings are not preserved. This format

can be imported by most vector graphic programs. It can also be displayed by most browsers.

11.7.6 Export All Graphics as PNG

The graphics of all models, for which a tab exists in the model graphics tab pane, are saved as

scalable vector graphic files (.svg) in the graphics sub-directory below the package directory.
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11.7.7 Export Basic Events List

Saves a list of all generic basic events of the currently displayed library in a text file (without

parameters).

The name of each generic basic event is followed by a list of models in which it is used.

After that for each model it is stated, which of the generic basic events contained in this

library it uses.

11.7.8 Export Transient Values

After performing a transient evaluation, the calculated data can be saved to a text file. Its

extension is .tdf. Each time step is a line, values are separated by ‘;’. The first line in the

file indicates the model, the second line the meaning of each column.

11.7.9 Export Final Tree

Save the final tree of the active fault tree as new model.

The final tree is the fault tree, in which all Combination gates and Transfer-In gates have

been replaced by the adequate branch, and all Reduced-Combination gates and Priority-And

gates have been replaced by a link to another (temporary) model.

Note: If the fault tree includes Reduced-Combination gates or Priority-And gates, the ex-

ported final tree cannot be evaluated, since the temporary models created for these gates are

not exported.

11.7.10 Export Markov Chains

This function will create the Markov chains, that are equivalent to the fault tree branch

topped by the selected gate. Creation of these chains is done in multiple steps. You may

select, which step’s result shall be exported.

Figure 80: The dialog to select, which chains to save.
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11.7.11 Export States and Edges List

Saves a list of all states and edges of the Markov model in a text file, including their descrip-

tions.

11.7.12 Export Final Markov Model

Exports the Markov model, that has been created internally for the last evaluation of the

active Markov model. You may add the exported Markov model to the project manually by

File – Add Markov Model. In that case, you might want to adjust the state names and

positions to the original model by Edit – Adjust State Names and Positions to other

Model, see section 11.3.25.

11.8 The Help and Configuration Menu

11.8.1 Help

The content of this document is presented in HTML format.

11.8.2 Set User Interface Look&Feel

Select your preferred Look&Feel, depending on which User Interface Manager are installed

on your machine. Restart of Functional Safety Suite will be necessary in order to activate the

Figure 81: The dialog to select the user interface Look&Feel.

new Look&Feel.

11.8.3 Set License File

Specify the path to the license file here.

Note: You must restart Functional Safety Suite to load the new license file.

11.8.4 About

A window opens, indicating the version of Functional Safety Suite and some parameters of

the license.
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11.9 The tool bar

All frequently used commands are also available as buttons in the tool bar. The tool bar is

context sensitive.

Table 5: Toolbar buttons

Icon Command

Close project and open another project

Save active model

Save all

Project properties

Create new model

Add existing model

Open the architecture symbol editor

Architectures: Set select mode

Architectures: Add a new architecture component

Architectures: Select draw net mode

Undo last change

Redo last undo

Event trees: Add condition to event tree

Event trees: Add case to event tree

Event trees: Create new damage for event tree

Fault trees: Add tree basic event or component event

Fault trees: Add gate event

Fault trees: Convert to gate

Continued on next page



11 MENUS AND COMMANDS 162

Icon Command

RBDs: Add Block Serial

RBDs: Add Block Parallel

Markov models: Add edge

Markov models: Add state

Delete event, branch or state

Cut marked event, branch or state

Copy marked event, branch or state

Paste event, branch or state

Create new generic basic event

Rename generic basic event

Duplicate generic basic event

Zoom in

Zoom out

Calculate model values

Calculate importance of basic events

Show chart with transient values

Show chart with component values

Determine and show prime implicants (minimal cut-sets)

11.10 Menus and Commands of the Symbol Editor
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Table 6: Toolbar buttons

Icon Command

Create a new symbol of the selected type in the selected library

Create a new text in the symbol

Create a new rectangle in the symbol

Create a new ellipse or circle in the symbol

Create a new line or polygon in the symbol
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A Importances

Importances indicate the influence of each basic event on a system parameter. There is a

whole range of importances in the literature, which are often defined differently, and almost

always without mentioning the system parameter for which they were defined. Usually it is

the unreliability Fsys(Tmission).

Importance for the mean system failure rate hsys is practically not mentioned in the literature.

This is understandable because importances are almost always defined in connection with fault

trees, and the calculation of the system failure rate with fault trees is also rarely dealt with in

literature. Some importances can be transferred directly to the failure rate, some analogous,

and some importances cannot be meaningfully defined for the failure rate.

Although importances were mostly defined for use with fault trees, some can also be applied

to other models, such as Markov models.

A.1 Partial Derivative (PD) and Birnbaum-Importance (BI)

The partial derivative is an obvious measure of the importance of individual base events of

the system value Fsys(T ), Qsys or hsys. The partial derivatives of the system unreliability Fsys

to the unreliability of each basic event Fx are also called Birnbaum-Importances.

A.1.1 Partial derivative of the system unreliability

For fault trees, the derivative of the system unreliability Fsys to the unreliability of each basic

event Fx is given by:

IPD
F,x =

∂Fsys(T )

∂Fx(T )
=
Fsys(T,F + ∂Fx)− Fsys(T,F)

∂Fx(T )
(75)

Here, F denotes the vector of the unreliabilities of the basic events – either as time variant

functions or at the end of system lifetime. If the fault tree contains conditions, i. e. basic events

described by their unavailability Q instead of F , the derivative of the system unreliability Fsys

to the unreliability of these basic events is not defined. Instead, the derivative of the system

unreliability to the condition’s unavailability Qx may be defined:

IPD
F,x =

∂Fsys(T )

∂Qx
=
Fsys(T,F,Q + ∂Qx)− Fsys(T,F,Q)

∂Qx
(76)

In case of Markov models, where the basic events are described by their failure rates h instead

of F , the partial derivatives can be defined by:

IPD
F,x =

∂Fsys(T )

∂hx
=
Fsys(T,h + ∂hx)− Fsys(T,h)

∂hx
(77)

If the Markov model contains conditions, the derivative to their unavailability can be defined

in the same way as for fault trees, see formula (76).
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A.1.2 Partial derivative of the system unavailability

For fault trees, the derivative of the system unavailability Qsys to the unavailability of each

basic event Qx is given by:

IPD
Q,x =

∂Qsys

∂Qx
=
Qsys(Q + ∂Qx)−Qsys(Q)

∂Qx
(78)

Here, Q denotes the vector of the unavailabilities of the basic events – either as functions of

time or as mean values.

In case of Markov models, where the basic events are described by their failure rates h instead

of Q, the partial derivative can be defined by:

IPD
Q,x =

∂Qsys

∂hx
=
Qsys(h + ∂hx)−Qsys(h)

∂hx
(79)

If the Markov model contains conditions, the partial derivative can be defined by formula (78).

A.1.3 Partial derivative for the system failure rate

For fault trees, the system failure rate hsys is a function of both the failure rate hx and the

unavailability Qx of each basic event, in general. Therefore, a partial derivative to the failure

rate hx only (
∂hsys
∂hx

) doesn’t make much sense. You could of course define two derivatives

IPD
hh,x

=
∂hsys
∂hx

and IPD
hQ,x

=
∂hsys
∂Qx

, but Qx depends on the failure hx for most basic event models:

hsys = fct(hx, Qx = fct(hx)) (80)

Thus, it makes more sense to define IPD
h,x as derivative to the (mean) failure rate of the basic

event λi:

IPD
h,x =

∂hsys

∂λx
=
hsys(λ + ∂λx)− hsys(λ)

∂λx
≈
∂

(
nMCS∑
i=1

hMCS,i

)
∂λx

=

nMCS∑
i=1

∂hMCS,i

∂λx
(81)

If you calculate the occurrence rate hMCS,i of each minimal cut-set MCS by

hMCS / h1 ·Q2 ·Q3 · . . . ·Qm
+ h2 ·Q1 ·Q3 · . . . ·Qm
+ . . .

+ hm ·Q1 ·Q2 · . . . ·Qm−1

(82)
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you’ll get

∂hMCS,i

∂λx
≈ ∂(h1 ·Q2 ·Q3 · . . . ·Qm)

∂λx

+
∂(h2 ·Q1 ·Q3 · . . . ·Qm)

∂λx

+ . . .

+
∂(hm ·Q1 ·Q2 · . . . ·Qm−1

∂λx

=

m∑
j=1

∂

(
hj ·

m∏
k=1,k 6=j

Qk

)
∂λx

(83)

If basic event x is not included in MCSi the derivative is zero. If it is included, the summand

with j = x is equal to
m∏

k=1,k 6=j
Qk (where all unavailabilities of this product are independent

of basic event x), and all summands with j 6= x are equal to hj
∂Qx

∂λx

m∏
k=1,k 6=j,k 6=x

Qk.

Thus we get

IPD
h,x ≈

nMCS∑
i=1


0 if BEx /∈ MCSi

m∏
k=1,k 6=x

Qk + ∂Qx

∂λx
·

m∑
j=1,j 6=x

(
hj ·

m∏
k=1,k 6=j,k 6=x

Qk

)
if BEx ∈ MCSi

(84)

For Markov models, the derivative of the system failure rate to the event’s failure rate is just

given by

IPD
h,x =

∂hsys

∂hx
=
hsys(h + ∂hx)− hsys(h)

∂hx
(85)

In Functional Safety Suite the derivatives are calculated numerically. The principle described

by formula (81) is implemented in a simple way: In order to calculate IPD
h,x , all basic event

values are altered in parallel, i. e. each basic event value given to the model for calculating

the system value will be varied, let it be hx, Qx or Fx.

A.2 Criticality Importance (CRI) and statistical confidence

The criticality importance is defined as the ratio of the relative change in system quantity Ψ

for the relative change of basic event quantity chi:

ICRI
Ψ,x =

∂Ψsys

Ψsys

∂χx
χx

(86)
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The criticality importance is the most interesting importance at all, because it gives a direct

answer to the question of how much a (relative) uncertainty in the statistical value of a base

event affects the overall result: A CRI of e. g. 0.1 means, that the system quantity Ψ will

increase by 10% if the basic event’s failure rate is in fact twice as high as assumed (+100%).

Or in other words: The greater the criticality importance, the greater the impact that a

relative improvement of the component has. It is therefore sometimes called Upgrading

Importance.

In addition, the criticality importance is equal to the probability that component x is in

failure, if the system has failed. Hence it gives a hint where to look for the failure first, if the

system has failed.

If the system unreliability is given by Fsys(T ) = fct(F) (e. g. by a fault tree without condi-

tions), the criticality importance can be calculated by:

ICRI
F,x =

∂Fsys(T )

Fsys(T )

∂Fx
Fx

=
Fsys(F + ∂Fx)− Fsys(F)

Fsys(F)
· Fx
∂Fx

= IPD
F,x ·

Fx
Fsys(F)

(87)

A.3 Risk Reduction (RR)

The risk reduction is the difference of the system value Q, F (T ) or h, given component x

would never fail. For a fault tree, the risk reduction can be calculated by

IRR
F,x = Fsys(T,F)− Fsys

(
T,F

∣∣
Fx:=0

)
(88)

where Fsys

(
T,F

∣∣
Fx:=0

)
denotes the vector of the component unreliabilities, in which the

unreliability Fx of component x is set to zero.

If the fault tree contains conditions, and component x describes such a condition, the formula

can be replace by

IRR
F,x = Fsys(T,F,Q)− Fsys

(
T,F,Q

∣∣
Qx:=0

)
(89)

where Fsys

(
T,F,Q

∣∣
Qx:=0

)
denotes the vector of the component unavailabilities (in general

time dependent unavailability functions, in fact), in which the unavailability Qx of component

x is set to zero.

Equivalent formula can be used for unavailabilities:

IRR
Q,x = Qsys(Q)−Qsys

(
Q
∣∣
Qx:=0

)
(90)

The risk reduction can directly be applied to the system failure rate, but in case of fault trees,

both hx and Qx must be set to zero:

IRR
h,x = hsys(h,Q)− hsys

(
h
∣∣
hx:=0

,Q
∣∣
Qx:=0

)
(91)
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A.4 Risk Reduction Worth (RRW)

The Risk Reduction Worth states the relative reduction of the system value F (T ), Q or h if

component x wouldn’t fail:

IRRW
F,x =

Fsys(T,F)− Fsys

(
T,F

∣∣
Fx:=0

)
Fsys

(
T,F

∣∣
Fx:=0

) =
Fsys(T,F)

Fsys

(
T,F

∣∣
Fx:=0

) − 1 (92)

IRRW
Q,x =

Qsys(Q)−Qsys

(
Q
∣∣
Qx:=0

)
Qsys

(
Q
∣∣
Qx:=0

) =
Qsys(Q)

Qsys

(
Q
∣∣
Qx:=0

) − 1 (93)

IRRW
h,x =

hsys(h,Q)− hsys

(
h
∣∣
hx:=0

,Q
∣∣
Qx:=0

)
hsys

(
h
∣∣
hx:=0

,Q
∣∣
Qx:=0

) =
hsys(h,Q)

hsys

(
h
∣∣
hx:=0

,Q
∣∣
Qx:=0

) − 1 (94)

Obviously the Risk-Reduction-Worth can take any value from 0 to infinity. The higher the

RRW, the higher the effect of an enhancement of component x. A value close to zero means

that component x has no significant effect.

Note: In some other definitions, the summand -1 is omitted.

A.5 Fussel-Vesely-Importance (FV)

Even though the Fussel-Vesely importance has been defined based on minimal cut-sets of fault

trees originally, it can be defined in a general manner as the quotient of the risk reduction

(RR) and the the original system value:

IFV
F,x =

IRR
F,x

Fsys(T,F)
=
Fsys(T,F)− Fsys

(
T,F

∣∣
Fx:=0

)
Fsys(T,F)

(95)

IFV
Q,x =

IRR
Q,x

Qsys(Q)
=
Qsys(Q)−Qsys

(
Q
∣∣
Qx:=0

)
Qsys(Q)

(96)

IFV
h,x =

IRR
h,x

hsys(h,Q)
=
hsys(h,Q)− hsys

(
h
∣∣
hx:=0

,Q
∣∣
Qx:=0

)
hsys(h,Q)

(97)

A.6 Risk Achievement (RA)

The Risk Achievement value is defined as the difference of the system value with an extremely

bad component, i. e. Qx := 1 (component never available) or Fx := 1 (component for sure

fails until end of mission/end of system lifetime), and the estimated system value:

IRA
F,x = Fsys

(
T,F

∣∣
Fx:=1

)
− Fsys(T,F) (98)



A IMPORTANCES 170

or

IRA
Q,x = Qsys(Q

∣∣
Qx:=1

)−Qsys(Q) (99)

The component failure rate is not limited to a certain maximum value, and thus also the

system failure rate is not limited (see formulas for fault trees in section 7). Hence, no Risk-

Achievement can be defined for the system failure rate.

A.7 Risk Achievement Worth (RAW)

If the Risk Achievement is divided by the original system value, you get the factor, by which

the system value would increase if the component will fail for sure:

IRAW
F,x =

Fsys

(
T,F

∣∣
Fx:=1

)
− Fsys(T,F)

Fsys(T,F)
=
Fsys

(
T,F

∣∣
Fx:=1

)
Fsys(T,F)

− 1 (100)

or is always unavailable:

IRAW
Q,x =

Qsys

(
Q
∣∣
Qx:=1

)
−Qsys(Q)

Qsys(Q)
=
Qsys

(
Q
∣∣
Qx:=1

)
Qsys(Q)

− 1 (101)

Note: In some definitions, the summand -1 is omitted.

As for the Risk Achievement, the RAW is not defined for failure rates.

A.8 Importancies for generic basic events

The above mentioned definitions are related to single basic events. If a system includes

several components of the same type, a modification of the component (or an uncertainty

of the statistic values) will influence several basic events simultaneously, but not only one.

Therefore, Functional Safety Suite offers the calculation of the above mentioned importancies

also for generic basic events: All basic events referring to the same generic basic event will

be modified simultaneously.

The CRI related to generic basic events can be greater than 1.0, if the generic basic event is

used in multiple conjuncted paths. For example for the simple fault tree shown in figure 82,

the CRI for the generic basic event A ICRI
F,A is 2.0.

If the failure rate of A increases by 1%, the system failure rate hsys will increase by 2%. But

be careful: Whenever you’ve got redundant structures, the values of thegeneric basic events

are non-linear in the system values. The CRI ICRI
F,A is valid only for small changes, therefore.

If you double the failure rate of generic basic event A, the system failure rate hsys will be four

times as high.
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Figure 82: Importance of generic basic events
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B Reports

With Functional Safety Suite it is possible to create professional reports within seconds (ok,

the actual creation of the report might take some minutes or even hours if you have large

models with transient evaluation and importancies calculation, but you can drink some coffee

or watch TV or talk to your boss in the meantime).

Note: All described functionality has been tested with Microsoft Office 365, with German

language settings. If you encounter any problems with other Microsoft Office/Microsoft Word

versions or language settings, don’t hesitate to send some problem report, including the .docx

file that doesn’t work as intended. If you want some company specific modification of the

report template or some additional feature, also write to the email stated on the front page

of this manual.

B.1 Create a Report

B.1.1 Automatic work

Click Export – Create Report directly after loading a project.

A dialog will appear, providing several options in order to adjust the content of the report to

your needs, see figure 83.

Figure 83: The create report dialog
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B.1.1.1 Page Layout

Set the page layout. The corresponding template in the templates folder will be selected.

Note: You can modify the templates according to your needs to some extend. In particular,

you can change the text formats, the header and footer, the page size and page margins, add

some text etc.

B.1.1.2 Graphics options

Select if the graphics in the report shall be vector graphics (Drawing ML format) or pictures

(bitmaps in PNG format). Vector graphics can be edited, but they are displayed correctly only

in newer versions of Microsoft Word (Microsoft Office). Pictures cannot be edited, but they

will be correctly shown even in older versions of Microsoft Word and some other programs.

B.1.1.3 FTA/RBD options

Select whether lists of the minimal cut-sets / prime implicants shall be included or not. The

list will be sorted for importance, i. e. the minimal cut-sets with highest value will be the first

in the list. The number of lines of the list will be limited to the number stated here, since it

typically doesn’t make sense to have list hundreds of pages.

Select whether a sub-tree, that is used by several top-level fault trees (or RBDs) is added

only once at the end of the report, or if it shall be added to the section of each top-level fault

tree that uses it. Note: If you decide to add sub-trees only once in the report, each sub-tree

will be calculated separately using the evaluation parameters assigned to the sub-tree. If you

decide to add separate sub-trees for each top-level fault tree section, the sub-trees will be

evaluated using the evaluation parameters assignd to the top-tree.

B.1.1.4 Importancies

Select the importancies that shall be calculated for each (top) model. Note that importancies

calculation might take quite some while, in particular in case of transient evaluation.

B.1.2 Post-work

After successful creation of the report (see status line and text output), you’ll find the report

file in the project directory. Its name consists of the project name, extended by date and time

of its creation. Open the report file in Microsoft Word (Microsoft Office 365). Mark all via

Ctrl+A and then press F9 in order to update all fields. Now you can complete the report. In

particular, you might want to adapt the front page, the headers and footers, add references

to the input documents that have been used for performing the analysis, add descriptions for

each model, add a summary section etc.

Feel free to add text, figures or tables wherever you want, but in order to be able to update

the report automatically (see next subsection), you should not do the following:
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• Do not change the names of packages or models in the project.

• Do not change the predefined section numbering or section headings. You may add new

sub-sections at the end of each section, and you may add new sections et the end of the

report.

• Do not change the figure or table captions. In particular, the ‘alternative text’ defined

for each figure and table must not be changed, because this is used as the unique ID to

find the correct figure or table in case of an update. In order to prevent any duplicates

of these IDs, do not copy and paste the automatically created figures or tables, not even

as a template for manually added figures or tables.

• Do not change the content of a table. (You can, but it will get lost in case of an update,

because the complete table will be replaced.)

• Do not delete any automatically created figures or tables, except if you never want to

have them updated anymore.

• Do not change the page number format.

B.2 Update a Report

There is no project without changes. Thus, also the quantitative risk evaluation report will

be subject to change. Often only minor changes need to be introduced, such as a corrected

failure rate or a corrected fault tree.

Therefore Functional Safety Suite provides the function to update an existing report in case

of typical changes by Export – Update Report. A dialog will ask you to select the existing

report file that shall be used as the template for the update. A new report will be created,

where all automatically created figures and tables will be replaced by new ones. The existing

file will not be changed.

B.3 Important notes related to reports

1. If you define a large header or footer, don’t forget to adjust the page margins in Microsoft

Word accordingly. (depending on your particular version, you might find that under

“Layout – Page Margins – User defined page margins – Page Margins – Top/Bottom”).

Select “Apply to overall document”, not only current section. If you don’t increase the

page margins sufficiently, the size of figures will not be correctly calculated so that you’d

have to adjust them manually.

2. You can modify or even delete the section “Warning, Hints, Information”. If you do an

update, a new section will be added at the end of the document in any case.

3. The page number format ‘section - page in section’ has been selected in order to reliably

predict the page number of the refered model while creating the figures, and to allow

you to add text of any length or figures or tables at (more or less) any place in the

document. Unfortunately, the page number format is not compatible with Libre Office.
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4. You should create or update a report before any model has been calculated. If you

don’t do so, the warnings, hints and information section might not be complete (it will

only contain the information of those models that haven’t been calculated previously).

5. If you mark some event, state, condition etc. the marking will also be visible in the

related figure(s) in the report. This might be intended or not.

6. If you’ve modified the report by other tools than Microsoft Word, the update will

probably not work. In particular, Libre Office deletes the file “report properties.xml”

which is included in the ‘.docx’ file while the report is created and which is necessary

to update the report.

7. If you change the structure of the project, i. e. if you add or delete models, change the

name of models or packages etc., the report might not be updated correctly. In that

case, it might be necessary to create a new report as explained in section B.1, and copy

all manually added text/graphics/tables to the new report manually. The same applies

if you want to change any of the report options.
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